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1. INTRODUCTION

The description of the earth's gravity field, or in other words, its

approximation with mathematical models, is an old interest of physical geodesy

and more recently it is a common goal with geophysics in general and with

satellite orbit determinations in particular. Before the development of satellite

techniques the observation techniques were restricted to terrestrial

gravimetry; adequate gravity coverage existed only over industrially well-

developed areas. The gravity profiles over the oceans were inadequate in

coverage, inefficient, and expensive, in addition to doubtful accuracy of the

results. Under these circumstances, the development of a meaningful gravity

model was impossible.

The satellite tracking technology opened the potential of geopotential

modeling by addition of new types of efficient data collection techniques with

global coverage capabilities. With the improvements in the quality, quantity,

and distribution of satellite tracking data (Smith 1982); as well as the increase

in coverage, refinements in resolution, and improvements in accuracy of

surface data (Rapp 1978, 1981, 1983; Rowland 1981); the geopotential models

showed significant progress. Satellite tracking contributed to the long

wavelength part of the spectrum expressed by improved low degree

coefficients; satellite altimetry and improved terrestrial surface information

contributed to the medium lengths of the spectrum. New developments in data

analysis and combination techniques helped to produce improved geopotential

models.

Despite the improvements, large discrepancies still exist between the

various models, even between those derived from nearly the same

observations. Some are "tailored" for specific satellite orbits, others

represent better surface data in specific areas. A general model which is

equally adequate for orbit determinations and geodetic use is lacking at the

present time; the principal reason is the lack of observation material covering

the full spectral range.

In the preceding years programs were organized by various institutions

both in the United States and in Europe for a systematic approach with

specific goals for the improvement of the geopotential. The Committee on

Geodesy of the National Research Council, National Academy of Sciences, U.S.A.,

in "Applications of a Dedicated Gravitational Satellite Mission", Washington D.C.,



1979 suggested research goals for the geodynamic program of NASA. These

include a gravitational satellite mission (GRAVSAT) to provide data necessary

for the achievement of the objectives of the program (Lerch, 1983). The

accuracies required with resolutions at 100 to 3000km were 2.5 to 10mgal for

gravity anomalies and 10cm accuracy for the oceanic geoid. Later NASA

developed a "Geopotential Research Program Plan" (NASA 1982) with specific

goals for gravity: *lmgal accuracy with 100km resolution for the gravity

field; 5cm accuracy with 100km resolution for the geoid (Murphy, 1983). This

program is divided into three phases: a) interim field model improvements,

b) geopotential research mission, and c) advanced mission. Currently all three

phases are progressing simultaneously and they will be discussed later in this

report.

The European Space Agency (ESA) also prepared a plan called Space Laser

Low Orbit Mission (SLALOM) to obtain global data coverage for improved

geopotential modeling.

Current geopotential models contain the low and medium frequency parts

of the spectrum, because the data types (satellite tracking data and V x V

mean anomalies) do not contain high and very high frequency information.

Theoretically each data type contains the total frequency range, however in

reality the measuring process acts as a bandpass filter limiting the range of

the spectrum (Schwarz, 1984). Therefore, the combination of different types

of measurements is necessary to obtain a homogeneous spectral resolution.

Data types containing high frequency are: 5' x 5' anomalies, deflections of the

vertical, inertial survey data, and airborne gradiometry. The very high

frequency field can be obtained from point gravity measurements, inertial

surveys, airborne gradiometry, height data, and surface density information.

The available high frequency gravity data covering a limited area are

usually used for the determination of some functionals of the anomalous

potential in a local area or at some selected points. These functionals can be

expressed mathematically by integral formulae (space domain) or by spherical

harmonic series (frequency domain). Theoretically the two types of formulae

are equivalent, but in reality they are different because of the differences in

the types and other characteristics of the gravity information used for the

computations. The quality of the estimation of a local or regional gravity field

depends on several factors such as: a) the sensitivity of the gravimetric

quantity to be estimated to the given type of data set, b) the density of the

2



data set, and c) area of the coverage and measurement accuracy. Various

functionals are sensitive to different frequency ranges represented by

different types of data: for example, in accurate geoid determination the low

frequency data are dominant; in accurate determination of the radial

component of the second order gravity gradient the high and very high

frequency data are required.

Recently local gravity data sets and elevation data are available in

gridded form and high degree geopotential models can be used as reference

fields. As a result, the higher frequency features of the gravity field can be

analyzed in local areas. The problem in this case, as in the case of

combination of global data sets, is the weighting of data sets in a combination

solution.

In the following sections of this report the approximation of the external

gravity potential of the earth is discussed in detail. The description of the

global gravity field by spherical harmonic series includes most of the gravity

models published since the late 1970's. The observation programs and

techniques utilized now and in the planning stage for future use are

described. The present techniques and potential improvements for adjustment

and data combination for gravity modeling are summarized.

Regarding the local and regional gravity field estimation the following

topics are discussed:

(a) the spectral properties of various data types

(b) estimation of gravimetric quantities in local and
regional areas.

The estimation techniques covered by the reviews of several recent

studies include the use of modified integral formulae and of the collocation

method.

Due to the specific interest in this topic, the prediction of gravity

disturbance at high altitude is also covered.

Considering that the high and very high frequency local and regional

field improvement is expected from airborne gradiometry, several accuracy and

feasibility studies in this area are also reviewed.
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2. GROPOTENTIAL MODBLS

The gravitational potential of the earth can be expressed in an earth fixed

and earth centered coordinate system by the well known harmonic series:

rm rO coo M + §A. sin X) PS. (sin #
A=2 m=o

where:

r,#,A are the geocentric coordinates of a point,

-a m is the product of the gravitational constant (G) and the
mass of the earth (M),

a is a scale factor, usually the equatorial radius of the
reference ellipsoid,

"Cg, S are a set of fully normalized harmonic coefficients,

P'1 are fully normalized Legendre functions.

The coefficients C8. and Sij are then determined up to a certain degree and

order from analysis of satellite orbit perturbations with or without combination

of surface gravity data.

In the following sections some of the recent contributions to the global

geopotential model development will be recapitulated in groups arranged

according to the originating institutions.

2.1 Goddard Barth Models (GEM) of the Goddard Space Flight Center (NASA),

Greenbelt, Maryland, 20771

2.1.1 GEM 9 and GEM 10 Models

GEM9 (Lerch and al. 1979) was derived by using laser tracking data from

GEOS-3, LAGEOS and Starlette satellites; S-band measurements on LANDSAT I;

and various tracking data on 26 other satellites used in previous GEM models.

These represent about 840,000 satellite tracking measurements, 200,000 of

which are laser ranging data. Because of the sensitivity of laser ranging to

satellite perturbations observation partials on nine satellites were computed

4



complete through degree and order 22 for the harmonic coefficients. For

other satellites, measurements are complete only to degree and order 16. The

orbital data and the list of satellites observed are given in Lerch and al.

(1979). GEM9 harmonic coefficients are complete to order and degree 20 with

selected higher degree terms.

GEM1O (Lerch and al. 1979) contains surface gravity data in the form of

5" 5z mean anomalies (Rapp 1977). Of the 1654 5° x 5" blocks, 1507 are

computed from I* x P values within each block, and 174 5° x 5 ° mean values

were interpolated. These surface date were combined with the satellite

information of GEM9. GEM10 is complete to degree and order 22 with selected

higher degree terms to degree and order 30.

In the development of GEM9 and GEM1O, changes were made in the

modeling technique used for previous GEM solutions. One of these changes

was the use of a "modified least squares solution" (Lerch and al. 1979). By

using Kaula's rule (a. = 10-5/12) for the coefficients as a constraint, the

extension of the solution to order and degree 20 was achieved. The use of

least squares collocation not only permitted a larger field but the application

of least squares collocation was also required to achieve acceptable results

due to the high correlation between several of the higher degree and order

coefficients (Lerch and al. 1981). Another modification was the use of less

weight for the surface gravity data in GEM10.

Geocentric coordinates for 146 tracking stations were also determined with

estimated accuracies of 1-2m in each direction. The equatorial radius of the

reference ellipsoid was derived by three different methods, all agreeing within

lm to 6378139m; the value for GM was also determined from laser ranging as

GM = 398,600.64 kms/sec2 . The value of the flattening 1/f = 298.257 (updated

by the recovery of J2 ).

The GEM9 and 10 gravity fields were evaluated for orbit determination

accuracy and compared with other independent information for geoid heights

and gravity anomalies. GEOS-3 orbital accuracies are about lm in radial

components for 5 day arc. The accuracies of the coefficients imply commission

errors in geoid height ,1.9m RMS for GEM9 and 11.5m RMS for GEM10.

The harmonic coefficients, station coordinates, results of comparisons and

evaluations are tabulated or plotted in the paper: Lerch and al. (1979).

5



2.1.2 GEM 10B and 10C Models

GEM1OB (Lerch and al. 1981) is a model derived by the combination of

GEMIO data with about 700 altimetry passes of GEOS-3 globally distributed

with a 20 spacing. GEM10B solution was a least squares adjustment without

any constraints; it is complete to order and degree 36. The geoid was also

computed from the harmonic coefficients using Brungs formula.

GBMIOC in an extension of GBMIOB beyond degree and order 36 and it is

complete to degree and order 180; it has the same harmonic coefficients as

GBMIOB through degree 36. The extended field was derived from: a) 38,000

1" x 1" mean gravity anomalies from surface measurements (Rapp l97a) (The

geophysically predicted surface anomalies in the Rapp file, predicted by DMA

Aerospace Center, were not used); b) GBOS-3 altimeter data in the form of

28,000 V x V mean sea surface values (geoid heights). Over 3000 passes

have been used to produce the set of mean surface values. In combining the

data, a single value per 1" block was used and altimeter data was preferred

over surface measured values. In total, about 50,500 1" x I* blocks with

gravity or altimeter observations were used in the adjustment of GBMIOC.

Residual geoid heights were computed by subtraction of GEM1OB geoid from

the 1" global set of geoid heights. The computer program developed by Rimso

(1979) was used for the harmonic analysis.

The use of altimeter data resulted in significant improvements in the GEM

models. Extensive tests have been made to determine the improvements in

terms of radial orbit and geoid accuracies.

The radial accuracy of the models were evaluated by computing GBOS-3

orbits from the same laser ranging data using different gravity models. The

difference of the altimeter residuals at the crossover points is a measure of

the radial orbital error. A crossover test comparing GEMIO and GBMIOB using

348 altimeter crossover points resulted in orbital RMS errors for GEM10 of

1.37m and for GEM10B of 1.00m.

To test the accuracy of the global geoids obtained from these models, the

RMS fit between the GEOS-3 altimeter profiles and those computed from the

models are listed for several GEM models in Lerch and al. (1981). Residual

RMS of fit for 10 "trench arcs" and for 10 "non-trench arcs" are respectively:

6



Trench Non-trench
arcs arcs

GEN10 2.87a 1.8

GOM10B 2.47a 0.94.

am10C 1.22. 0.75a

Only a little improvement can be seen for the "trench" passes until high

degree coefficients are computed (GEM10C). For the "non-trench" passes, the

improvement is 100% in GEM1OB versus GEM10. SEASAT profiles were also used

for comparison with GEMIOB values. The two geoids match within tim.

The geodetic parameters computed from GEM1OB are very close to current

values adopted by the LAG: GM = 398600.44 * .02 kms/seca, a. = 6378138 * Im,

1/f = 298.257 2 0.001, and g. = 978031.5 * 0.3 mgal.

Considering that GEM10C is an extension of GEM10B by harmonic analysis

of the residual V x V geoid heights, the authors (Lerch and al. 1981)

compared these residual geoid heights with values computed from the harmonic

coefficients of the "residual" gravity field. The RMS difference was 44cm,

which is a very good agreement. The power spectrum of the 180 degree field
"shares an excellent continuity" with the GEM10B spectrum for terms beyond

degree 36.

2.1.3 GEM L-2 model

A new Goddard Earth Model, GEM L-2, was developed from "satellite only"

observations utilizing 2 1/2 years of LAGEOS satellite laser ranging data in

combination with tracking data on 30 other satellites in GEM9 (Lerch and al.

1982a). The shape, high density and high altitude (about one earth radius) of

LAGEOS eliminates, for all practical purposes, errors due to uncertainties in

modeling non-gravitational forces. This model, complete through degree and

order 20, contains more that 600,000 laser measurements with more than half of

them on LAGEOS. Due to the high altitude of LAGEOS, the long wavelength

features are substantially improved; however, the coefficients beyond degree 7
are dominated by GEM9 data. The main purpose of this model was to obtain

more precise station positions and in turn, better distances between the
stations for NASA's crustal dynamics program and to improve the long

wavelength gravity field. The same modified least squares method that was

7



employed for the GEM9 model was utilized for this solution. The method is

described in Lerch and al. (1977)

Simultaneously with the harmonic coefficients and station coordinates, the

GM term was computed as 398600.607 kms/sec2 , using c = 299792.5 m/sec as the

speed of light. Polar motion and Al-UT1 variations were estimated from 5-day

segments of LAGEOS data. Finally earth tides were modeled with Love

numbers h = .60, 12 = .075, and k = .29. The solid earth phase angle was

obtained as 2.018".

The improved accuracies of GEM L-2 coefficients versus those of the GEM9

model through degree and order four are significant. They are tabulated in

(Lerch and al. 1982a). An independent verification of these accuracies has

been performed by Wagner (1982) using independent long term 24 hour

satellite longitude accelerations. GEM L-2 satisfies these accelerations. The

'by degree' contribution of the harmonic coefficients to the total longitude

accelerations show that: "while the accelerations are sensitive to harmonics as

high as degree 6, the GEM L-2 uncertainties beyond degrees 3 or 4 are not

directly tested by these longitude accelerations" (Lerch and al. 1982a).

The improved GEM L-2 resulted in more accurate orbits, and in turn, more

accurate station positions. Consequently, the capabilities to improve

monitoring tectonic motions by satellite laser ranging were also improved. The

polar motion and Al-UT1 variation estimates contributed to the stability of

harmonic coefficient solutions and improved positioning accuracy. The polar

motion values have a precision of about 10 cm.

The effects of the GEM9 and GEM L-2 models and of the polar motions

from BIH and GEM L-2 on station positioning were compared. For the

comparison the entire LAGEOS data set (1979 through 1981) has been divided

into two independent sets by splitting each month's data into two 15-day

segments. This way the two solutions contain independent data, span the

same time interval, and average out any resulting plate motion over these base

lines (distances). Comparison of 28 distances between eight stations were

made using GEM9 and GEM L-2 station coordinates and with GEM L-2 and BlH

polar motion. The RMS error for the 28 lines from GEM9 was 7.2 cm; the same

from GEM L-2 model and polar motion was only 1.8 cm.

In summary, the laser ranging on LAGEOS and the GEM L-2 model resulted

in: a) an improved method for tracking station positioning, b) a great

improvement of the harmonic coefficients of the gravity field through degree

8
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and order 4, and c) an improvement of LAGEOS orbit errors from Im with

GEM9 to about 30 cm with GEM L-2 (F.J. Lerch and al. 1982a, 1984).

2.2 The Ohio State University (Rapp) Models

2.2.1 The Rapp 1978 Model

In this combination solution the following satellite, terrestrial gravity, and

altimeter data were used (Rapp 1978):

- The potential coefficients of GEM9 (Lerch and al. 1979) derived from

satellite tracking data up to degree and order 20 were used in two

adjustments: the first adjusted the coefficients up to degree 8 and the

second to degree 12.

- The second type of data was a set of V x I" mean anomalies consisting of

39,405 land anomalies and 29,478 V x 1" mean values derived from GEOS-3

altimeter data (Rapp 1978a). After editing and replacing oceanic estimated

values with altimeter anomalies, where available, a total of 50,650 10 x V block

values were retained in the merged set. For the missing 14150 anomalies, zero

values were used with a standard deviation of *30 mgal.

The combination method essentially is a weighted adjustment of the

harmonic coefficients computed from the mean anomalies and those obtained

from the satellite model. The results are a set of consistent harmonic

coefficients and mean anomalies. Details of the method are given in Kaula

(1966), Rapp (1968), Snowden and Rapp (1968), and Rapp (1978).

Each solution resulted in the adjusted harmonic coefficients (to degree 8

and 12 respectively) and a set of 64800 V x V adjusted mean anomalies.

Each set of the mean anomalies were developed into harmonic coefficients to

degree 30 and compared to the coefficients of the GEM9 solution. The

differences are tabulated in terms of: root mean square coefficient

differences, percentage differences, root mean square undulation, and root

mean square anomaly differences. For the degree 8 solution the maximum

undulation difference is 67cm at degree 8 and for the 12 degree solution it is

91cm at degree 11. The coefficients between 9 and 12 of the degree 8 solution

disagree with the GEM9 coefficients more that those of the 12 degree solution.

Beyond that the differences are about the same for both solutions.

The degree 8 and 12 solutions in terms of the implied coefficients show

maximum differences at degree 9 through 14; beyond that the differences are

9
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small. The percentage differences are: at degree 8, 3%; at degree 10, 16%; at

degree 12, 26%; at degree 14, 11%; at degree 16, 8%; and at degree 30, 5%.

This shows that the higher degree terms are not sensitive to the highest

degree used in the adjustment.

The adjusted anomalies of the degree 12 solution were developed into

harmonic coefficients to degree 60. The degree variances and the root mean

square coefficient variations implied by these coefficients were compared to

GEM9 adjusted V x 1" mean anomalies (Rapp 1977), and to the geoid spectrum

from altimetry by Wagner (1978) Kaula's rule (l0-/2) gave variations too

large with respect to the Rapp solution. An excellent agreement was shown

with Wagner's results from the analysis of altimeter data. The author notes

that an adjustment to degree 20 would improve the solution, especially for

satellite orbit computation,s but it would take too much space and time on the

OSU computer. The effects of the correction terms due to the spherical

approximation, neglect of the topography in computing the mean anomalies, and

the atmosphere were not considered. Rapp considers as most critical the

terrain correction, which reached 6% at degree 39 in his previous study of 5"

anomalies solution (Rapp 1977).

The 12 degree adjustments' mean anomalies were converted later to

potential harmonic coefficients to degree 180 using an efficient algorithm of

Rizos (1979) as discussed by Rapp (1979a). The deficiency of this 180 i 180

set of coefficients was that the coefficients above 12 degrees (from GEM9)

were omitted from the adjustment, therefore making it inadequate for orbit

computations. Studies and experimental computations were carried out (Rapp

1980) to facilitate the incorporation of higher degree coefficients without

significant additional computer requirements. An approximate procedure using

certain assumptions was used to generate a set of 180 x 180 coefficients; this

was compared to the rigorous solution (Rapp 1978). The average percentage

difference was 8.6%, the root mean square undulation difference was * 80cm

and the root mean square anomaly difference was 2 mgal. The percentage

difference was 6.0% for degrees 2 through 12, 15.4% for 25 through 36, and 8%

for higher degrees. Relative to the data noise percentage error (about 50%)

the difference between the rigorous and the approximate solutions was

considered very small. The approximate combination method was used for

Rapp's following model (Rapp 1981).
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2.2.2 The Rapp 1981 Model

This model used the most recent available input material in an approximate

type of adjustment. A selected set of harmonic coefficients up to order and

degree 36 were combined with the new 64800 P x 1° surface mean anomalies.

The results were the adjusted 10 x 1" anomalies and the adjusted coefficients
corresponding to the a priori coefficients. The adjusted anomalies were

developed into spherical harmonic coefficients through order and degree 180.

The satellite observations are represented by a set of harmonic

coefficients merged from selected solutions. For these "a priori" coefficients

all available solutions were considered. These models are briefly described in

Rapp's report (1981). Likewise the considered zonal coefficients and resonance

terms are identified in the report. Before selection and merging of the

coefficients, 1' x 1V mean anomalies were computed from each set and

compared with a terrestrial and GEOS-3 1 x 1" data set. The differences

between the terrestrial and harmonic coefficient values are due mainly to the

difference in the frequency constraint of the two types of data. The small

differences between the various harmonic solutions was considered not to be

significant. The merge procedure was to form a weighted average for a

coefficient from the PGS S-2, PGS 1331, PGSL-1, and the "miscellaneous"

coefficient. The weighting of the PGSL-1 and miscellaneous coefficients was

done by the use of the standard deviations for each coefficient. For the

other two sets the standard deviations were taken to be 0.9 of the

corresponding GEM9 coefficient. If it did not exist, the standard deviation of

the miscellaneous coefficient was used.

The final set of coefficients, called "SET 1", was checked by comparing

the computed 1' x 1° anomalies with the corresponding surface data. Rapp's

(1981) report shows the mean square anomaly differences between GEM9, PGS

S-2, PGS S-4, PGS 1331, PGSL 1, and "SET 1" harmonic coefficient fields and

the Terrestrial/GEOS-3 Data Set. There is no significant change. There are

also no significant differences between the anomaly degree variances for the

GEM9 and "SET 1" coefficients (Table 3 of Rapp's 1981 report).

The I* 1 mean gravity anomalies used in the combination were obtained

by merging an updated set of land V x 1° anomalies (42585 values)

and 1 x 1 ° anomalies computed from adjusted SEASAT altimeter data

(Rowlands 1981). The merged set contained 56751 anomalies. All anomalies

were referred to the 1980 Geodetic Reference System (Moritz 1980). In
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comparing the new set to the previous set merged with GBOS-3 mean

anomalies, a root mean square difference of 27.5 mgal was found on the basis

of 52972 common values. The standard deviation of all values in the new set
is *10 rgal (Rapp 1981).

In the application of equations relating coefficients and anomalies or the

quadrature formula used for the estimation of the potential coefficients, 64800

P x 1' anomalies are required. For the missing 8049, values the mean

anomalies implied by the coefficients to degree 36 of the model "SBT 1" were

used. Considering the standard deviation of the implied anomalies to be *30
mgal, the root mean square standard deviation of the complete set is about

*15 mgal. Rapp used *20 mgal, allowing for the errors in the anomalies

computed by geophysical correlations in the unsurveyed areas (the adjustment

technique used requires that the accuracy figure for all blocks be assumed

the same).

The process of combination: If a set of mean anomalies is given, the

coefficients and anomalies can be related by a quadrature formula derived by

Colombo (1980). He also showed that the formula gives results almost as good

as those of more complicated optimal estimation techniques for the harmonic

coefficients (Rapp 1981). The combination procedure used by Rapp was, in

essence, the computation of a weighted average of the starting coefficients

and those implied by the anomaly data. The advantage of this combination

technique is that normal equations are not required; however, simplifications

were made relative to the observation weights for the anomalies in order to

make a solution to degree 36. It was necessary to assume that all the 1" x le

mean anomalies have the same accuracy. The principle of the adjustment was

initiated by Kaula (1966), and the adjustment equations are given in Rapp's

reports (1978 and 1981).

Results: The first results of the combination were the 1 I * mean

anomalies and the adjusted coefficients up to order and degree 36. The

results were compared with other recent models and evaluated to assess the

quality and the improvements of the new model. A summary of these

assessments are given as follows: (1) The accuracy of the geoid undulation

by degree, implied by the accuracy of the adjusted coefficients from degree 2

through 36, was *152cm for the starting coefficients and *87cm for the

adjusted set, (2) the differences between the a priori and the adjusted

coefficients are tabulated in the form of average percentage, root mean square
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undulation and anomaly differences by degrees. The percentage differences

are largest at the higher degrees (60Z to 80% between degrees 29 to 36), (3)

the anomaly degree variances are somewhat higher at the higher degrees of

the new solutions.

The adjusted 10 x 1" anomalies were compared to the anomalies of Rapp's

1978 solution. The new - old mean anomaly difference was 0.5 mgal, the RMS

difference was *11 mgal, and the maximum difference was 215 rgal. The

absolute value of the residuals of the adjusted anomalies ranges between 0

and 18 rgal; 30884 of the 64800 1" x I" blocks are between 0 and 2 mgal with

only 3827 above 7 rgal. The large residuals are generally correlated with the

locations where the le x 1" mean values have been geophysically predicted.

The harmonic coefficients were compared to those of: Rapp (1978), GEM9,

GEMIOB, GEMlOC and GRIM3. The percentage difference between the Rapp 1978

and 1981 models is 10% at degree 7 and 23% at degree 10, increasing gradually

to 60% at degree 180. The difference between Rapp's 1981 and GEMIOC (the

other expansion to degree 180 published by Lerch and al., in 1981), is 7% at

degree 7, 14% at degree 10, and 120% near degree 180. A large difference in

the RMS anomaly of *7.3 mgal is tabulated between these two 180" x 180"

solutions. The anomaly differences between Rapp's (1981) model and the other

compared expansions range from *3.6 to *9.1 mgal

The standard deviation of the adjusted coefficients (order and degree 36)

is obtained in the adjustment; for the higher degree coefficients (not part of

the adjustment), accuracy estimates were asaigned composed from data noise

(*20 mgal) and sampling error due to the finite size of the anomaly blocks. At

degree 50 the percent error due to data noise is 52% while the sampling error

is only 4%; at degree 175 the data noise part of the percent error is 138% and

the sampling error part is 52%.

Geoid undulation accuracy and gravity anomaly accuracy by degree and

cumulativity are plotted on graphs in the report. These are compared to

GEM9 and to the a priori coefficients respectively. The percentage error of

the adjusted coefficients are shown on a graph with the same errors of GEM9

and the a priori coefficients. This graph shows that the Rapp 1981 solution

reaches 100% error at degree 120; the a priori coefficients do so at about

degree 30 and GEM9 at about degree 20.

Anomaly degree variances are plotted for GEM10C, GRIM3, and Rapp 81

adjusted coefficients and those implied by Kaula's rule. GRIM3 values are
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higher than the other two after degree 20. The summations of the degree

variances from degree 2 to 36 for each model are the following: GEM10C, 239

mgal; GRIM3, 265 mgal; Rapp 81, 228 mgal. After about degree 50, the degree

variances of the GEM1OC expansion are lower than Rapp's solution by about 1

mgal.

For testing the model for orbital computations, a number of orbital

comparisons were made at Goddard Space Flight Center by Frank Lerch and

James Marsh. The results of these tests indicate that Rapp's model performed

comparably with some solutions in existence at that time, such as GEM9,

GEMlOB, and PGSL 1. However the author points out that additional testing is

needed to obtain a better picture of the performance of this model in orbital

work. It is also stated in the report that the intent was to produce a general

field and not one specifically tailored to a satellite.

In the conclusions are mentioned the required improvements generally

given also by other authors such as: surface topography corrections for the

altimetry data; better mean anomalies for the replacement of geophysically

predicted values; and more rigorous combination procedures.

2.3 The Smithsonian Astrophysical Observatory (SAO Gaposchkin) Models

2.3.1 SAO-79 model

This is a description of the earth's gravity field in spherical harmonics

through degree and order 30 (Gaposchkin 1980). Three types of data have

been used in the combination: satellite tracking, terrestrial gravity

observations, and satellite-altimeter data.

Satellite laser-ranging data on 10 satellites from 15 globally distributed

stations were used. The accuracy of the observations ranges from 5m (1971)

to 5cm for the 1975 data. The normal equations from a previous model

(Gaposchkin and Mendes 1977) involving the same satellites and observations

were used in the adjustment of this solution. The procedure for orbit

analysis is given in Gaposchkin (19 7 9a)

The V x I* mean gravity anomaly data was obtained from the Defense

Mapping Agency, Aerospace Center. These data were merged with -existing SAO

data. In total, 1504 550km - 550km block anomalies were computed by

collocation.
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The base for altimeter data was 2116 tracks with 442,411 data points. The

processed data was sorted into P u 1x averages by linear regression and the

RMS of the residuals were computed. The bad data with a residual greater

than 3w were removed. This process removed 65 tracks and 15,762 data

points. The average e of the remaining 25,295 1 x 1 geoid heights was

2.1m. The 1" x P geoid heights were then formed into 550km x 550km block

values by collocation, resulting in 1218 values.

About seven solutions with different weights were made, and the one that

gave the best agreement with all data types was adopted. Increasing the

influence of one particular type of data usually weakens the agreement with

the others; therefore, the determination of the relative weights is a difficult

task.

Detailed comparisons of the various solutions with surface gravity data,

geoid heights, and satellite orbits are tabulated in Gaposchkin's report (1980).

In addition to Gaposchkin's seven solutions, the GEM10 model by Lerch and al.

(1977) is also included in these comparisons. The harmonic coefficients of the

selected solution are listed in the report. It is also concluded that the model

agrees satisfactorily with the surface gravity, altimetry, and satellite

ephemerides available at the time of the development. The author also lists

deficiencies of the basic information used, such as: a) the satellite normal

equations date back to 1976, with "poorer quality in both accuracy and

distribution" with respect to "significant new satellite laser-ranging data"; b)

it is stated that better reference models, orbit computation programs, and

station coordinates would improve the model; c) only a fraction of the

altimeter data has been included, and some time variations could be reduced

by averaging the data; d) many of the ocean data (observed or predicted)

should be replaced by altimeter data and geophysically interpreted data on

land areas must be handled with caution.

2.4 The European (GRIM) Models

2.4.1 The GRIM 3 Model (Ch. Reirber and al. 1983a)

For the development of this model the following data were used:

(1) Orbital perturbations for 22 satellites, consisting of: optical tracking data

on 18 satellites, laser ranging on 9 satellites, and Doppler measurements
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on one satellite. These measurements were combined in 106 arcs of 5 to

25 days, corresponding to 1028 days of continuous tracking.

(2) Condition equations for zonal and resonant harmonics of order 11 to 15,

derived from other studies.
(3) Surface gravity data in the form of 1* x * mean free air gravity

anomalies consisting of (a) 25001 values computed from measured or

predicted point values and taken from Rapp's Oct. 1979 file; (b) 27916

values over ocean areas derived from GEOS-3 altimetry, (Rapp's 1980 file).

The solution was obtained by combining the normal equation systems and

introducing constraints for some station positions of "special importance"

(larger weights). Absolute constraint was introduced to impose well known

short inter-station vectors and the connections of the station network of

Doppler data (MEDOC) to the laser and optical sites.

The results are spherical harmonic coefficients up to order and degree 36

and coordinates of 95 tracking stations. A detailed gravimetric geoid was

computed from the 1' x 1* surface gravity data and the GRIM3 model by

superimposition of the geoid computed by the integration of Stocks formula to

the long wavelength geoid from the GRIM3 coefficients.

The model has been extensively compared to and evaluated with respect to

other recent solutions, such as GEM10B, Rapp 81, and SA079. The comparisons

show that the model is reasonably close to these models, especially to SA079,

in terms of zonal and resonant harmonics of order 15. RMS coefficient

differences, anomaly differences, and undulation differences by degree are

given in plots between GRIM3 and each of GEM1OB, SA079, and Rapp 81

solutions. The comparisons show larger differences in the long wavelength

geoid (up to I = 10); the anomaly differences by degree increase with A. The

authors state that: " there is no evidence that one model is better than the

other".

The long wavelength differences were analyzed by comparing potential

differences at high altitude. This analysis concludes that terms of degree 2

and 3 of GRIM3 are mostly involved. The authors suspect that the low weight

given to the predicted gravity data is one of the reasons, in addition to a

lack of enough high and well observed satellite data (such as LAGEOS). The

g'eoid heights were compared with those of GEMIOB. The results show the

following differences: maximum, 14.7m; minimum, 15.8m; mean, 0.03m; RMS, 3.7m.

The extreme differences occur where only predicted data was available. The
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differences over ocean areas are small (RMS = 1.5m). Both solutions depend in

these areas on GEOS 3 data, but they also indicate the good quality of the

anomalies converted from GEOS-3 geoid heights.

The geoid height over ocean areas were compared with SEASAT

independent geoid heights along selected profiles. For these comparisons,

profiles from GEM10B and SA079 were also used. The conclusion of this test

is that GEM10B fits the SEASAT geoid better than GRIM3 and that the

differences have long wavelength components due to the error in the low

degree harmonics previously discussed.

For orbit computation GRIM3 solution with GEM10B model using GRIM3 and

Tapley (1980) station coordinates respectively. GEOS 1, GEOS 3, LAGEOS,

BEACON 3, and Starlette were used. The conclusions of these tests are that

orbital errors are quite large with both models; radial and cross-track errors

are very close, but errors in the along-track component are smaller with the

GRIM3 model.

The authors conclude that the model is satisfactory globally, although they

recognize deficiencies - due to poor or missing gravity data - of some low

degree and order terms.

2.4.2 GRIM 3B Model (Oh. Reigber and al. 1983b)

The data used for the original solution of GRIM3 was supplemented with the

following additional data:

(a) 16 months of LAGEOS laser tracking data

(b) 1° x l' SEASAT altimeter data (Rapp)

(c) V x V land gravity anomalies from Rapp's 1983 file

(d) recent zonal and resonant harmonics.

The new solution resulted in a complete set of spherical harmonic coefficients

to degree and order 36, and the coordinates of 109 tracking sites.

A total of 151 arcs of laser and optical measurements to 21 satellites were

used in this solution. 63 arcs were LAGEOS arcs observed from 20 laser

* tracking stations between January 1980 and June 1981. For the LAGEOS orbit

analysis in addition to the earth's gravity and lunar-solar attractions models

-* for earth tides, ocean tides, the earth albedo and along track accelerations

were used. For the coefficients all partials were computed according to the

sensitivity of a particular orbit to perturbations related to specific

coefficients. For LAGEOS all partials for harmonics of degree and order 16
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were computed, and for the zonals up to degree 19.

Observation equations for even and odd zonal harmonics as derived by

various authors were included in the solution. In total, 112 condition

equations were used for zonal harmonics. For resonant harmonics of order 11

to 15, 236 observation equations were added as derived by various authors

between 1974-1981.

As was mentioned previously, the surface gravity data was contributed by

Rapp, and consisted of 18504 land mean anomalies for 10 x 10 blocks and

38,345 1o x 1V sea anomalies determined from SEASAT altimetry covering

oceanic and coastal areas between 72"N and 72"S latitudes. The general

computation method used for the GRIM models is described in detail in Reigber

and al. (1983a). Essentially, it is the combination of separate normal equation

systems derived from: a) satellite orbit perturbations computed from tracking

data of close earth satellites; (b) observation equations for zonal and resonant

terms obtained from analysis of secular and long period perturbations of

various satellites; and c) surface gravity data in form of V x V mean

anomalies of both land measurements and ocean surface altimetry observations.

The normal equations were computed by directly using the 1" x 1" values and

their respective uncertainties (5 - 15 mgal).

The results of the solution are: a) fully normalized harmonic coefficients

of the potential complete to degree and order 36; b) the geoid computed form

the obtained coefficients; and c) the coordinates of 109 tracking stations.

The harmonic coefficients were compared with the coefficients of the

GEMIOB, GEM L-2, Rapp 81, and SA079 models; the RMS coefficient, undulation,

and anomaly differences by degree are plotted on graphs. Comparisons were

made also with observed land gravity anomalies, SEASAT altimetric geoid,

gravity derived from satellite to satellite tracking, and for satellite orbit

determinations.

From the detailed evaluations and comparisons given in the paper, the

authors conclude that due to the large quantity of precise LAGEOS

observations, the longest wavelength part of the potential (harmonic

coefficients up to order and degree 7) has been considerably improved. A

better fit to observed longitude accelerations of 24 hour satellites and to the

SEASAT geoid has been obtained as compared to GRIM3. The utilization of

GRIM3B improved LAGEOS orbits; however, for Starlette and GEOS 3 the orbits

are better with GRIM3 than GRIM3B. A small improvement is seen in the fit to

18

*..~ ~ Z 3 *" * .*12. %..'.



surface gravity data. The coordinates of the 109 tracking sites range in

accuracy from 10 meters to several centimeters. The large errors are for the

old optical stations and the most accurate are the coordinates of the 20

LAGEOS laser tracking sites. These are compared with the GEM L-2 set. No

major difference was found between the two sets of coordinates.

The authors feel that the longest wavelength part of the model is "reliably

determined". As far as the rest of the spectrum is concerned, improvements

are necessary.

2.4.3 The GRIM3-LI and the GRIM3-MIP models

Since the derivation of the GRIM3B model, two additional models were

derived by the same group: GRIM3-L1 (Reigber and al. 1984), and GRIM3-MIP

(Reigber and al. 1984a). These models are essentially recombinations of the

observation material used for GRIM3B, with different weighting of particular

data sets according to the dedication of the model. GRIM3-MIP (preliminary

model) contains Doppler tracking data of TRASIT (three months data from the

MEDOC-1 tracking campaign). This model was tailored for the processing of

MEDOC-2 Doppler data. Although the description of GRIM3-L1 is still not

available in the open literature, in Reigber and al.(1984) it is stated that this

model has a well-balanced weighting and it is not tailored to a particular

satellite. GRIM3B (Reigber and al. 1983b) is considered a LAGEOS model. The

latest three GRIM models: GRIM3B, GRIM3-L1, and GRIM3-MIP, have been

compared with GEM1OB and GEM L-2 models, with observed gravity data and

for orbit determinations. The conclusion is that GRIM3-L1 and GRIM3-MIP give

a better fit to any data source than previous solutions (GRIM models). A

significant improvement was achieved in the determination of low order

harmonics. Further improvements are expected from more accurate and better

data coverage (Reigber and al. 1984a)

2.5 Special Models

The Geopotential models reviewed in the preceding sections belong in the

group of "general purpose" models intended for both terrestrial use and

satellite orbit computations. Most of these models were derived by combination

of satellite tracking aid various surface gravity data. The weights of the
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contributing information were usually determined by experimental solutions

with the goal that the resulting coefficients satisfy the beut all types of input

data and fit several satellite orbits. An exception is the GEM9 model, which

contains only satellite observations; however, this model provided the satellite

tracking data for many subsequent general and special combination solutions.

Therefore, the GEM9 and its refined model, the GEM L-2, are discussed in the

preceding group of the general models. Special models are developed for the

computation of satellite orbits or more specifically "tailored" for the orbit of

specific satellites (Gravity models used for the computation of the Navy's

navigation satellites, or those developed for GEOS-3 and SEASAT).

2.5.1 Special Models of the Goddard Space Flight Center: PGS-1, PGS-S2,

PGS-S3 and PGS-S4 (Lerch and al. 1982b)

The purpose of this development was to improve the geopotential model for

the computation of SEASAT ephemerides to achieve a 10cm accuracy for the

radial component of the satellite position. The altimeter data precision of

SEASAT is somewhat better than 10cm; therefore, the full utilization of the

altimetric precision for geodetic and oceanographic work required the 10cm

accuracy for the radial position of the spacecraft.

The ephemerides computed with the GEM9 model and the tracking station

coordinates by Marsh and al. (1977) indicated an error of 3-5m RMS in the

radial position. First, the normal equations of GEM9 were combined with eight

3-day laser orbits of SEASAT. This solution, called PGS-S1, was complete to

degree and order 30 with additional terms to degree 36. This solution

provided some improvement, but the radial errors remained several meters in

magnitude. In the second step of development, the Unifid S. Brand (USB)

data for the same eight arcs and for one additional arc of SEASAT data was
added to form PGS-S2 model. The radial accuracy of this model was improved;

however, large differences showed in accuracy between the regions with

adequate tracking station and those with sparse tracking sites or none at all.

In the Northwest Atlantic region the accuracy was about 1m, and in the South

Atlantic and Pacific areas about 3m. The RMS value was 1.8m.

Analyses indicated that tracking data accuracy is adequate to obtain a

50cm radial accuracy, provided a very accurate force model is given (Lerch

and al. 1982). There was no more ground tracking data for the improvement

of the geopotential model, thus it was decided to use GEOS-3 altimeter data.
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The GEMlOB model consisting of GEM9 + GEOS-3 + 5" x 5" surface mean

anomalies was used. The normal equations of this model were combined with

SEASAT tracking normal equations into a new model, PGS-S3, developed to

degree and order 36. The authors state that "a quasi-stationary sea surface

topography model was not used, therefore there may be some aliasing within a

few low-degree and low-order coefficients of the geopotential due to these

unmodeled effects". They consider this effect significant for SEASAT orbit

computation at the 10cm level. It is recognized that the global validity of the

coefficients may be sacrificed, but it is pointed out that the purpose of the

development was not to create a general model, but a specific one for the

SEASAT orbit requirements.

The errors of the SEASAT radial positions improved to about 1.2m RMS, a

substantial improvement over PGS-S2. This model has been used by the Jet

Propulsion Laboratory for the computation of the ephemerides for the final set

of the released SEASAT altimeter data. The PGS-S3 coefficients and the

coordinates for the laser and USB stations are listed in the report (Lerch and

al. 1982b).

The GEOS-3 altimeter data has a number of limitations as compared to the

SEASAT data (altimeter precision, lack of data recording system restricting the

altimetry to shorter arc lengths). The SEASAT altimeter, with 10cm precision

and with a data recording system, permitted continuous coverage of the

oceans. A set of 9600 globally distributed observations covering 12 days were

combined with the data of PGS-S3 model. This combination resulted in PGS-S4,

a set of coefficients (36 x 36) and adjusted station coordinates. This model

reduced the SEASAT radial error to about 70cm RMS

The basic technique for the combinations, like for the other GEM models,

was a weighted least squares adjustment. The subsequent solutions of this

set of models have been progressively produced by the addition of new data.

For PGS-S1 and PGS-S2, where only laser and USB data were added, it was

necessary to use a "modified least squares approach". This technique is

described as "using the a priori statistics of the gravity field to provide

stability for the recovery of higher degree coefficients and to reduce the

effect of aliasing". The method minimizes both the signal and the noise, thus

controlling the over-adjustment which occurs in the case of simple least

squares adjustment, when high correlation exists between high degree and

order coefficients in the presence of noise (observation residuals). The
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mathematics is described in Lerch and al. (1979), in the discussion of GEM9.

[In the paper "Goddard Earth Models for Oceanographic Applications (GEM10B

and 10C, Lerch and al., 1981) the "modified least squares" technique, called

"least squares collocation", was also used in the adjustment of GEMI10.]

The SEASAT gravity models have been tested extensively regarding their

performance in the determination of the radial position of the satellite. One

group of these tests was the use of altimeter data at track intersections for

the determination of radial position errors; the other was the comparison with

the independent orbital computations for SEASAT by the Naval Surface

Weapons Center (NSWC) from TRANET/Georeceiver-Doppler data (Colquitt and al.

1980). The altimeter crossover test gave 1.4m RMS for the NSWC "smoothed"

ephemeris versus the I.lm RMS of PGS-S4.

2.5.2 The Rapp 1977 model

Another "special model" is the set of potential coefficients to degree 52

computed by Rapp (1977a) from terrestrial anomalies only. The purpose of

this experiment was not to produce the best possible model but to analyze

certain aspects of the terrestrial gravity field.

From 38,406 1" I' mean free air anomalies, 1507 5" equal area anomalies

were computed, with an additional 147 predicted values - a total of 1654

globally distributed anomalies were available. The summation formulae were

used to derive the harmonic coefficients. A smoothing operator was used in

these computations and was found to significantly effect the higher degree

coefficients. For the determination of the terrain effect several different

terrain correction models were used. It was indicated that the terrain

correction to low degree coefficients is on the order of 10% to 25%. It was

found that the corrected potential coefficients did not agree as well as the

uncorrected coefficients with the satellite derived GEM7 coefficients. The

percentage accuracy by degree: 8.6% at degree 3, 53% at degree 12, 86% at

degree 30, and 88% at degree 52.

Mean anomalies were computed from the potential coefficients and compared

to the original anomalies. The difference was *8.6 mgal at degree 16, 64.7

mgal at degree 36, and *2.6 mgal at degree 52. Obviously, better coverage

and better quality gravity data would have given better results.
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2.5.3 Special Models of the Naval Surface Weapons Center

Theme models consist of harmonic coefficients computed through nineteenth

order and degree with some additional terms or deletions in different

variations. The models are optimized for the polar orbits of the Navy

Navigation Satellites and generally were not intended for use for other

satellites and/or terrestrial purposes. The principal geodetic use of these

models was for the computation of Doppler satellite ephemerides, and they

were revised many times from the original inception of the system. Between

1967 and 1972, the gravity fields designated as NWL-8D, NWL-8H, and NWL-9B

have been used for the Doppler system. Some information regarding these

models can be found in (Anderle and al. 1976). The gravity fields used since

1972 are listed below with information available in the open literature. Some

additional information was obtained from Richard J. Anderle of Naval Surface

Weapons Center (NSWC).

2.5.3.1 World Geodetic System 1972 (WGS72) Gravity Model. This model was

derived simultaneously with the development of the World Geodetic System 1972

(WGS72) by a Department of Defense (DOD) working group (Seppelin 1974).

The model consists of harmonic coefficients complete through degree and

order 19, with additional zonal coefficients through degree 24 and resonance

terms through order 27. The data used for the development was that of

Doppler observations of the Navy Navigation Satellites (NAVSATs) taken at the

semi-permanent Doppler network (TRANET stations). This is about 85% of the

Doppler data; 15% was observed by equipment in mobile vans at over 120

worldwide distributed locations; optical observations, laser data and surface

mean anomalies in the form of normal equations of the Smithsonian Earth Model

II, derived by the Smithsonian Astrophysical Observatory (SAO); and surface

gravity data in the form of 410 10" x 10" equal area mean free air gravity

anomalies. Only 45% of these anomalies were computed from observed data.

The remaining 55% were derived by "gravity-geophysical correlation

techniques".

For each data set, a normal equation matrix was formed, then the normal

equation matrices were combined and the resultant matrix solved.

There is no evaluation or comparison of this model with other models in

the open literature.
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2.5.3.2 NWL10-E Model. This model was introduced for computation of all

precise NAVSAT ephemerides in January 1973, replacing the previous gravity

field designated at NWL9-B. It in based on satellite observations used for the

development of WGS72, and gravity coefficients are computed up to order and

.4 degree (n,m) = (19,19), but selected terms below 19th degree were suppressed

and higher order coefficients to (nm) = (29,27) were added (Anderle 1984).

This model produces the same NAVSAT orbit as WGS-72 to an accuracy of Im.

2.5.3.3 NWLIOE-1. This model replaced the previous NWL1O-E model in June

1977. It is the same as NWL10-E except for the modification of two 27th order

resonance coefficients.

2.5.3.4 NWL-IG6. This gravity field was a revision of two pairs of coefficients

of each order from the NWL10-E model to obtain orbits which fit GEOS-3

Doppler observations. It was expected that comparison of altimeter

measurements on intersecting tracks will reduce the bias to 70cm below the

precision of the altimeter (Anderle and al. 1976). This set of coefficients was

used for a year or two for GEOS-3 and was subsequently replaced. All

previous ephemerides were recomputed using a Goddard model, GEM9 (Anderle

1984).

NWL10E': This model is the NWL1OE model with improved 14th and 15th

order resonance coefficients. This model was adopted for precise

computations of SEASAT orbit by NSWC because of a slight improvement in

radial residuals over those obtained with the GEM10 model (Anderle 1984).

2.5.3.5 World Geodetic System 1984 (WGS84). This gravity model is part of the

new geodetic system derived by the Department of Defense to replace the

WGS72. This model is a combination adjustment of Doppler tracking data of

\* near-earth satellites, laser-ranging data on LAGEOS satellite altimetry data

over the oceans, and mean gravity anomalies of 3" x 3' derived from surface

observations. The harmonic coefficients complete to degree and order are

given in Macomber (1985). The model, however, is complete through degree

and order 42 with some higher degree terms (Anderle 1984). A Technical

Report describing the WGS84 is in preparation and will be published in 1985.
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3. PRGRAMS AND TECHNIQUES FOR THE IMPROVEMENT OF THE GRAVITY FIELD
MODELS

The analysis of satellite orbital perturbations and satellite altimetry

substantially advanced the description of the earth's gravity field in terms of

spherical harmonic series and oceanic geoid undulations and/or mean

anomalies. These new types of data covering large areas combined with

surface measurements over land areas facilitated the derivation of many

different sets of harmonic coefficients expanded to various degrees according

to the data used and the purpose of the model. Some of these models are

discussed in the previous sections.

One of the principal error sources in satellite orbit computations, and in

turn in satellite altimetry, is the gravity model. An illustration of the need

for more accurate gravity models is the accuracy of the current altimetry.

The SHASAT altimeter instrumental precision is about 10cm, on the other hand,

the best radial accuracy of the orbit computed with the best fitting gravity

model is 70cm. This is largely due to the uncertainties in the gravity model

(Lerch and al. 1982a).

Years ago the large gaps over the oceans (gravimetrically empty areas)

hindered the derivation of global gravity models with meaningful accuracy;

today the gaps are - excluding polar regions - over land areas such as: (1)

physically inaccessible areas (high mountains and deserts) in Africa, parts of

Asia, Alaska, and South America; (2) countries where gravity data are

classified, even mean values as large as 1* x I: USSR, Eastern European

countries, and China are examples (Balmino 1983, Rapp 1985).

The latest and the best published 1 ° x 1* mean free anomaly coverage is

the "Rapp January 1983 1 x 1° Data Set" (Rapp 1983). Prof. Rapp and his

staff collected, analyzed, and processed gravity data during the past ten

years. The data include: direct observations over land and ocean areas,

predicted values by topographic-isostatic techniques and other geophysical

correlations.

The Jan 83 Rapp file contains 44,513 1 x I* mean anomalies on land and

sea derived from direct observations or predicted. These data merged with

approximately 38000 1" x 1 ° anomalies estimated from SEASAT altimeter data

resulted in a combined set of 56000-57000 1' x 1* values used in recent

harmonic expansions.
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There is no hope that the policy might change in the areas where gravity

data is classified. The physically inaccessible areas may be surveyed by

airborne gradiometry and/or by aircraft carrying accelerometers of

appropriate design and GPS receivers for position and aircraft acceleration

measurements. In other areas terrestrial gravity data is likely to be available

as local or regional surveys are progressing; however, it cannot be expected

that large amounts of data substantially assisting global models will be

produced by direct ground/surface techniques.

Substantial improvements of the gravity models can be expected from

additional gravity data delivered by satellite programs. Several programs and

various sensor instruments are under development with very good potentials.

These programs are briefly reviewed in the sequel.

3.1 Satellite Altimetry

The sea surface information provided by satellite altimetry contributed

dramatically to the knowledge of the geoid, the gravity anomalies over the

oceans and in turn to the improvement of the spherical harmonic geopotential

models. In addition to the geodetic aspects, altimeter measurements

substantially contributed to oceanography in the fields of: current detection,

ocean tidea, winds and waves, etc. Through the experience with the Skylab,

GEOS-3, and SEASAT, the follow on hardware will permit about 2cm precision

over a period of several years (Marsh 1983).

Satellite altimetry over the past 12 to 15 years has become very rich in

literature. Several special issues have been published devoted to the various

scientific fields related to satellite altimetry. A comprehensive review and a

long reference list is given by J.G. Marsh in the Reviews of Geophysics and

Space Physics (1983). From the point of view of geodesy, the shape of the

mean sea surface approximating the geoid and the recovery of mean gravity

* anomalies were the primary objectives of the analyses of altimeter data. An

estimate of the sea surface relative to the geoid for the North Atlantic Ocean

was published by Winch (1981). Similar work was done by Stommel and al.

(1978), and for the global ocean surface by Levitus (1982). Numerous analyses

have been done to obtain the sea surface heights (geoid) and mean gravity

anomalies from both GEOS-3 and SEASAT data. Some of these analyses are:
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Rapp (1977, 1979a, 1979b, 1979c, 1982a, 1982b, 1983b), Cruz (1983), Hadgigeorge

and al. (1979, 1981), Kearsley (1977), Kahn and al. (1979a, 1979b), Marsh, J.G.

and al. (1980), Marsh, J.G. and Martin (1982), Liang (1983), Rowlands (1981),

Marsh, J.G. and al. (1983).

Satellite altimeter data were used in combination solutions for global

gravity models by: Rapp (1978, 1981), Gaposchkin (1980), Hadgigeorge and

Blaha (1981), Lerch and al. (1981, 1982a), Reigber and al. (1983a, 1983b, 1984),

and others. These models are reviewed in the preceding sections of this

report.

The most extensive gravity anomaly work from altimetry data was

performed by Rapp and his research associates at the Ohio State University.

Some results of their work is reviewed below: The computation of mean

anomalies and geoid heights from GEOS-3 data is described in Rapp (1977,

1979a, 1979b). The altimeter data were received from NASA Wallops Flight

Center up to Sept. 1977. After editing, the data set contained 419,216 frame

measurements in 1976 arcs. The orbital error and altimeter bias were removed

by an adjustment using a first degree polynomial in time for the orbit and

bias error, and introducing crossover observation equations (Rapp 1979b).

From a set of adjusted geoid undulations geoid undulation maps, mean gravity

anomalies and mean undulations were produced by least squares collocation in

12,144 1 x V blocks and for 377 blocks of 5. The accuracy of a 1" X V

mean anomaly was predicted as *7 mgal and it was 23 mgal for a 5' block.

These figures represented an improvement factor of 2 in relative accuracies

obtainable from the GEM9 model.

Rapp and his research associates at the Ohio State University (OSU)

analyzed SEASAT altimeter data covering all ocean areas between 70' North

and South latitudes. The analysis consisted of: the editing of the basic data

produced by the Jet Propulsion Laboratory and provided to OSU by the

National Geodetic Survey; the adjustment of the data using the crossing arc

criteria; and the recovery of mean gravity anomalies and sea surface heights

above the reference ellipsoid. Based on a set of criteria established from

previous experience, 1,085,006 values were deleted from the total of 4,429,491

values. A second edit was performed by fitting the altimeter sea surface

heights to the geoid undulations derived from Rapp's geopotential model to

degree 180 (Rapp 1978). This edit deleted 6420 data points. 1667 duplicate

observations were found, so that after editing, 3,336,398 observations remained
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in 5036 arcs (Rapp 1982b) The adjustment was performed by Rowlands (1981)

using the crossing arc technique. Due to the limitations of the computer, first

a primary set of global arcs were adjusted, then holding these fixed, four

regional areas followed. The average crossover difference before the

adjustment was 1.5m, after the adjustment it was reduced to t28cm. The

adjusted SEASAT surface heights, by ignoring the effects of sea surface

topography, can be regarded as geoid undulations. From the undulations

34,973 1" x 1" and 1178 5" x 5' mean anomalies and geoid heights were

computed by least squares collocation, previously utilized for GEOS-3 data and

described in Rapp (1979a). The comparison with common GEOS-3 values

resulted in'7.8 mgal difference (standard deviation between 27221 common, 1" x

1V anomalies) for the anomalies, which corresponds to '87cm for the

undulations. Comparisons of the common 5' x 5" values gave '2.2 mgal and

276cm differences for the anomalies and undulation, respectively (Rapp 1983b).

Point sea surface heights computed from the adjusted data were compared

with similar GEOS-3 values. The mean difference was 1.3m with standard

deviation of *37cm. Later it was discovered that some crossover data was not

used in the adjustment. The northeast Pacific area was primarily affected by

this error. It was determined that the effect on 1" x 1 * mean anomalies was

of the order of *6 mgal, and on the surface heights 240cm. Outside this area

the errors are significantly smaller (Rapp 1983b). A number of regional

adjustments repeating the original Rowland (1981) adjustment were carried out

in specific areas. Information on these adjustments are given in Rapp (1982a)

Another work accomplished at OSU with GEOS-3 and SEASAT altimeter data

is the "Adjustment and Combination of GEOS-3 and SEASAT Altimeter Data" by

Liang (1983). The previous GEOS-3 adjustment of Rapp (1979b) included only

3275 arcs. In 1981 OSU received from NOAA-NGS the 3.5 year GEOS-3 data set

including 10,520 arcs from April 1975 to December 1978. This data set is

described in detail in Agreen (1982). This revised data set was processed at

OSU with the goal that the "new" GEOS-3 data be on the same system with the

SEASAT adjustment so that the two sets of data can be combined. A new

editing and crossover computing procedure was used which has several

advantages versus the previously used procedure at OSU.

The combined set of data is a very dense coverage including all available

sea surface height data from both GEOS-3 and SEASAT missions. The

combined data set also has a very good distribution due to the different
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inclinations of the two satellites.

The differences between Lhe adjusted GEOS-3 and adjusted SEASAT 1' x

V surface heights in the sense of GEOS-3 - SEASAT is 5cm with standard

deviation *52cm (28,810 P x P blocks compared).

The comparison of the combined data set with the adjusted GEOS-3 and

the adjusted SEASAT data gave the following results: The average 1" x l"

mean surface height difference, GEOS-3 - combined, considering two different

areas, is 3cm with an average standard deviation of *32cm. The average 1* x

V mean surface height difference, SEASAT - combined, is -lcm with an

average standard deviation of *27cm.

For the areas of the "old" GEOS-3 coverage Kearaley (1977) prepared 26

geoid undulation maps from the adjusted data by Rapp (1977). The final

adjusted data of SEASAT (Rowland 1981, Rapp 1982a) were used by Rapp

(1982b) to construct 53 maps of sea surface heights at a contour interval of 2

mters. The heights are referred to the 1980 Geodetic Reference System

BUipsoid: a = 6378137m, f = 1/298.267222. The map is centered of data on a

1" x 1" grid predicted from the adjusted data by a least squares collocation

procedure.

The Air Force Geophysical Laboratory (AFGL), formerly the Air Force

Cambridge Research Laboratories (AFCRL), developed a short arc adjustment

method for the determination of the geoid and the gravity field from satellite

altimeter data. This method does not require the precise orbit of the altimeter

satellite (Brown, 1973, Blaha 1979, Hadgigeorge and al. 1981). This method was

used by AFCRL for the processing of both GBOS-3 and SEASAT altimeter

observations, and it was upgraded to combine altimeter and gravity anomaly

data. GBOS-3 measurements were combined with a set of 1654 equal area 50

mean anomalies (Rapp 1977a), resulting in a 14 x 14 solution in spherical

harmonics and geoid and gravity anomalies on a 6* i 5 grid (Hadgigeorge and

Blaha 1979). These adjustments (14 x 14) are termed as "first phase"

adjustments and they are used as reference fields for "second phase"

solutions consisting of point mass and collocation techniques (Blaha 1984, Blaha

and al. 1984). The results of the two "second phase" adjustments (using as

observations the residuals of the "first phase" 14 x 14 adjustment) represent

a 2* resolution, corresponding "very approximately" to a spherical harmonic

expansion of 90 x 90. The results on a 20 x 2" equilateral grid were densified

into data on a V 1" geographical grid by an "errorless collocation". The
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comparison of the results for geoid undulations and gravity anomalies was

accomplished in 13 large oceanic blocks, containing 12,934 grid points (Bessette

and Hadgigeorge 1984). The r.m.s. difference in geoid undulation is 0.45m and

the anomaly r.m.s. difference is 2.8 mgal. The average magnitudes of the

differences are 33cm and 2.0 mgal respectively.

Efforts are in progress for the improvement of the precision of the

altimeter system. These systems and the expected improvements are described

in detail by McGoogan and al. (1982), and others in the field of radar and

radio sciences.

One essential requirement, to match the altimeter precision (currently

10cm), is the improvement of the radial orbit accuracy of the altimeter

satellite. This depends on the improvement of current gravity potential

models, improvement in the global distribution and accuracy of tracking of the

satellite, and on the elimination of non-gravitational force effects (air drag,

radiation pressure, etc.).

A number of studies have performed and published in a special issue of

the Journal of the Astronautical Sciences (28(4) Oct.-Dec 1980] on the orbital

accuracy of SEASAT. The results can be summazized as follows: The orbital

errors of GEOS-3 have been systematically reduced for SEASAT by the

improvements of the geopotential models, due to satellite altimetry data. The

several meters error in GEOS-3 radial distance was reduced to 75cm - 1.5m

r.m.s. in the case of SEASAT. Analyses by Marsh, J.G. and Williamson (1980)

and other studies also confirmed an apparent 4 meter difference in the Z

components of tracking station coordinates of Goddard Space Flight Center and

Naval Surface Weapons Center SEASAT ephemerides. The saine study indicated

that additional analyses, in correlation with laser and unified S-band tracking

data, are expected to yield an orbital accuracy of 50cm r.m.s.

There are two new altimeter missions in development in the U.S.: The

GEOSAT satellite of the Navy (Kilgus and al. 1981) and the TOPEX of NASA.

The GEOSAT, launched in 1985, carried a SEASAT type of altimeter with a

three years' lifetime and 18 months of nominal mission time. The TOPEX

mission according to the plans will carry an altimeter with a *2cm precision

and will yield an accuracy of '14 cm along a measurement grid (J.G. Marsh,

1973). A detailed analysis of the expected TOPEX mission, contemplated fro

1990, is given in Christensen (1982). For the tracking of TOPHX and other

future altimeter missions the development of a new improved TRANET Doppler
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network is planned. A new tracking system is under development at the Jet

Propulsion Laboratory (JPL) using the Global Positioning system (GPS). These,

together with some improvements in the modeling of the force fields, may

achieve a 10cm accuracy in the the radial component of the orbits of altimeter

satellites.

3.2 Satellite-to-Satellite Tracking (SST)

The technique of the satellite-to-satellite tracking for direct measurement

of the earth's gravity field originated in the Apollo program. Muller and

Sjogren (1968) used the range rate tracking data of the lunar orbiters as

"direct observations" of the acceleration of gravity along the line of site

between the tracking station on Earth and the satellites orbiting the moon.

These observations showed circular mass concentrations ("mascons") over the

flatlands of the moon (Colombo 1981b). The adaptation of this concept to the

Earth's gravity field, was the "high-low" two satellite configuration, realized

-. by the "low" orbiting GEOS-3 (8400km) tracked by Doppler from ATS6

(40,000km) geosynchronous satellite. Wolf (1969) proposed a pair of satellites

in a "low -low" configuration, where two satellites on a low, circular polar

orbit following as close as possible, would measure the range rate between the

two spacecraft. This arrangement will yield a high density global set of

gravity data covering land and sea without any gaps. The measurements will

provide the medium wavelength spectrum of the gravity field, (higher degree

spherical harmonics) which cannot be determined accurately from ground

based tracking. The enormous potential of this technique generated interest

and research to resolve theoretical and practical problems. Studies were made

to optimize satellite arrangements, develop data reduction methods and to

estimate achievable accuracies. Some of these studies are: Schwarz (1970,

1972), Hajela (1974, 1978, 1979), Douglas and al. (1980), Rummel and al. (1976),

Marsh and al. (1981, 1984). The above studies have been concerned with the

recovery of medium and short wavelength gravity field in regional or local

areas, utilizing GEOS-3 and ATS-6 "high - low" observations. As the

advantages of the "low - low" configuration became obvious, more and more

studies and error analyses were prepared on this topic.

Rummel (1980) estimated simultaneously orbital parameters and the gravity
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field in a study of "low - low" SST experiment, assuming an "optimal"

situation: range rate precision 2 10^-6 ms-l, satellite distance of 250km, and

an orbit altitude of 200km. The a posteriori standard deviations were: 20.9m

for point geoid heights, *0.7m for geoid height differences and 6 to 7 regal for

V x 1" mean gravity anomalies. These values compare well with the results of

GEOS-3 altimetry. A study by Jekeli and Rapp (1980) estimated the accuracy

of mean anomalies and geoid undulations for various block sizes based on an

assumed mission. The accuracy was defined as a commission error due to

measurement noise propagation and a truncation error. For a "low - low"

mission of six months duration, at an altitude of 160km and range rate data

noise of 21 micrometer/sec. for four second integration time, it was estimated

*2.3 mgal accuracy for I* x V mean anomalies and 4.3cm for i" x 1" mean

geoid undulations.

Colombo (1981b) made an error analysis of the global geopotential model

from a "low - low" SST mission. It was assumed that two drag compensated

(DISCOS system) satellites were used. The differentiated range - rate signal

was considered as equal to the line of sight component of the gravitational

acceleration. Both the least-squares adjustment and the least squares

collocation adjustments were used. The main results are summed up by

Colombo as follows:

IF

(1) the two satellites move on the same polar circular orbit at 160km altitude,

at a distance of 300km from each other;

(2) the accuracy of the averaged range rate is vFx x 10- 6 as- ', the averaging

interval is 4s;

(3) residual data are used with respect to a reference model of specified

accuracy, complete to degree and order 20,

THEN:

(1) The relative error in the potential -'oefficients could be better than 1% up

to degree n = 130, better than 10% up to n = 210, and better than 50% up to

n = 270;

(2) The accuracy of point geoid undulation implied by the coefficients could

be better than 5cm RMS in the band from 300km to 40030km (total error) and
better than 10cm in the band from 140km to 3000km (total error).
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It is noted, that above degree 200, the accuracies predicted by collocation

are significantly better than those by least squares. The report considers

that the principles of the study can be applied to actual SST data, to obtain a

high resolution harmonic model. Colombo recommends as adequate technique

the method in Colombo (1981a) and that more attention is to be paid to global

data reduction.

To escape from the large inversion problems of the least squares

collocation, Kaula (1983) developed an analytic scheme for inferring the

variations of the gravity field from SST. Each revolution is Fourier analyzed

separately, from north pole to north pole and east-west variations are inferred

by requiring that the potentials at the poles agree. The method for data

analysis is outlined in the paper and it is applied as a test to a pair of

satellites at 160km and 100km spacing, with 5" data point interval (72 data

points per revolution). The assumed gravity field (Gaposchkin 1980) of

tesseral harmonics to the eight degree was completely recovered in three

iterations over 64 revolutions. It is demonstrated that data points at regular

intervals provide the opportunity for utilizing techniques without massive

matrix inversions.

On the basis of the successful demonstration of the SST technique by the

results of the GEOS-3/ATS-6 and of the "low - low" simulation studies the

planning of gravitational satellite missions started in the mid 1970's. NASA in

the US prepared the GRAVSAT program, mentioned earlier and the European

Space Agency (ESA) came up with a plan called Space Laser Low Orbit Mission

(SLALOM) which involves the simultaneous tracking by laser interferometry,

from the space shuttle, of two reflecting spheres to measure their relative

velocities with respect to the shuttle and to each other (Colombo 1981b)

The GRAVSAT mission was reformulated into the NASA Geopotential

Research Mission (GRM) with more ambitious accuracy and resolution goals.

The GRM mission will be discussed later in this report.

3.3 Satellite Gradiometry.

An approach with a very good potential for the determination of the Earth's

global gravity field with higher resolution and accuracy is a gradiometer of

high precision capable to operate from a satellite. At least two instruments
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with different approaches and a number of simulation studies for the

assessment of their performances are available. It is expected that an

operational system may be available sometime in the 1990's.

One of the instruments under development by Paik (1981) is the cryogenic

gravity gradiometer. Superconductivity and the availability of SQUID

(Superconducting Quantum Interference Device) technology for low noise

amplifiers allowed the construction of a very sensitive and low drift gravity

gradiometer, operating at liquid helium temperatures. By employing

accelerometer pairs and differencing the outputs along each coordinate axis, a

"tensor gravity gradiometer" is obtained, which measures all the independent

components of the gradient tensor simultaneously (five independent plus one

component). The goal for the sensitivity of the instrument is 10-1E [lE

(Etv~s unit) = 10-' S - 2 ]

Another satellite-gradiometer is under study by a group of French

scientists, under the name of PROJECT GRADIO. It is described by Balmino

and al. (1984). This concept employs a gradiometer composed of

micro-accelerometers to measure the components of the gravity gradient tensor

from a specially constructed satellite with a disturbance compensation system.

The satellite will be launched to a circular, polar orbit of 200 to 250km

altitude for a six month's mission. The accuracy obtainable for the terrestrial

gravity field is estimated to be 2 to 5 mgal for a resolution of 150 to 300km

from measurement precision of 0.01E. The expected launch data is 1991 - 1992.

Simulation studies were carried out to estimate the accuracy and

resolution of the gravity field from satellite gradiometry. Some of these

studies are: Breakwell (1979), Jekeli and Rapp (1980), Colombo and Kleusberg

(1983), Rummel and Colombo (1983), Rapp (1985).

Assuming a satellite gradiometer with an accuracy of 10-4E (rms), Colombo

and Kleusberg (1983) estimated the attainable accuracies for the gravity field

and for the distance of the satellite to the center of the Earth. A six month

mission in polar orbit at 200km altitude with data taken every three seconds,

would provide data for computation of the harmonic coefficients up to degree

and order 300 with less than 50% error and improve the coefficients up to

degree 30 by up to four orders of magnitude compared to existing values.

A simulation study suggested that an adjustment based on gradiometer

data could produce orbital accuracy in radial distance 10cm or better, if the

orbits are 2000km high and first an improved gravity model to degree 30 is
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achieved. This may substantially improve satellite altimetry.

Rummel and Colombo (1983) in their study assume a satellite-gradiometer

measuring all six second-order derivatives of the potential. With this

information it is possible to separate: gravity field recovery, altitude of the

satellite, and orbit determination. This allows the use of fast spherical

harmonic analysis like in Colombo (1981a). The simulation study explains the

separation of the orbit and the gravity parameter estimation process. The

gravity field was generated only from Zonal potential coefficients up to n =

300 (The resulting gravity becomes invariant in longitude). The actual orbit

displacement and the potential coefficients were almost exactly recovered after

two iterations.

Recently Rapp (1985) computed the expected accuracies for anomalies and

undulations for a six month mission with a radial component gradiometer

(tl0-1E) at an altitude of 130km. The results in terms of accuracy versus

resolution are plotted on two graphs and compared to an SST mission (*1

pm/sec.) and to two models, OSU (Rapp) 81 and GEM L-2. On a global average,

the SST mission improves the current models by a factor of 10. The

gradiometer mission improves the SST results by about 60% with the exception

of the very short wavelengths (i.e., < 20km). Taken from the anomaly graph,

the gradiometer could obtain an accuracy of *3 mgal with 50km resolution, the

SST error is three times as large. From the geoid undulation graph for 50km

resolution, the accuracy of the gradiometer geoid is *2cm versus the SST

geoid accuracy of *18cm for the same resolution.

3.4 NASA's Geopotential Research Program (1982)

As it was mentioned in the introduction, the program is divided into three

areas: a) interim field model improvements; b) geopotential research mission;

and c) advanced mission. All three areas will be discussed briefly based

mainly on J.P. Murphy's paper (1983), presented at the I.A.G. Symposium in

Hamburg Germany (1983).

The objective of the "Interim Field Model Improvements" phase is the

achievement of a "factor of two" improvement in the current GEM models. In

essence, this is a rework and analysis of older observations by utilizing

current and improved techniques, updated force models, recently obtained
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direct or indirect gravity observations, etc. In 1982 a Gravity Field Workshop

was held at the Goddard Space Flight Center to specify the required actions

for the achievement of the improvements. For the improvement of the long

wavelength features of the models, the recommended steps were: 1)

reprocessing of selected laser, S-band, Doppler, and SST data using improved

models for measurement corrections and for satellite motions; 2) incorporation

of orbital information obtained from the analysis of the motion of synchronous

and of satellites in resonant orbits; 3) processing of additional Doppler data

from satellites with different orbital inclinations; 4) acquiring and processing

laser data from four satellites in a new tracking program; 5) reprocessing

available optical data with improved star catalogue (F5); and 6) incorporation

of orbit perturbation information on the Zonal coefficients.

For the improvement of the short wavelength features, the

recommendations of the workshop were: 1) improvement of data collection in

surface gravimetry and incorporation of data into the models; 2) full utilization

of satellite altimetry data with state of the art ephemerides, ocean topography,

tidal and other environmental corrections. In addition, the use of optimal

estimation and adjustment techniques and of the latest in computer technology

is recommended.

The purpose of the Geopotential Research Mission (GRM) is to map the

gravity and magnetic fields with accuracies and resolutions necessary for

requirements in geodetic solid earth and ocean science applications.

Considering only gravity requirements the geomagnetic aspects of the program

are omitted from this summary.

The GRM system will consist of two satellites to be launched by the space

shuttle and maneuvered into a circular polar orbit of 160km altitude. The

separation along the orbit between the two satellites could vary between 100

and 600km. The two satellites are equipped with a Doppler satellite-to-satellite

tracking system, with a design capability of one micron per second relative

range rate measurements. When all the components of the system error

budget are taken into account, the overall performance is better than .1

micrometer per second for four second averages, one order of magnitude

smaller than the design goal of one micrometer per second (Murphy 1983). Air

drag and other non-gravitational forces are cancelled by the Disturbance

- Compensation System (DISCOS). this system keeps the proof mass and the

satellite in a purely gravitational orbit. The mission is planned for six
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months, during which time there will be six tracks through each l' x 1"

square. The tentative launch date is 1992-1993 (Rapp 1985). As it was stated

previously, the goal of the mission is to obtain the gravity field globally to *1

mgal and the geoid accurate to 5cm with 100km resolutions for both. Most

significantly, this data set will cover the currently inaccessible and

gravimetrically "unknown" areas. The resolution and the accuracy of the

gravity field will allow the computation of 0.5" x 0.5* mean anomalies globally,

and in turn, the expansion of harmonic coefficients, to high degree. A better

gravity model will produce more accurate orbits for low satellites used for

satellite altimetry and for other gravity sensors as well. An improved geoid

will help studies of sea surface topography and the conversion of ellipsoidal

heights, produced by space techniques, into geoid heights. In the field of

geophysics, the wavelength features of the gravity field, between 100 and

1000km will help the understanding of the mass variations in the upper mantle

(lithospheric plate motions). Shorter wavelength gravity anomaly features may

permit the study of mantle convection and density inhomogeneities (Taylor and

al. 1983).

The third phase of NASA's Geopotential Research Program Plan is the

"Advanced Mission". This phase consists of advanced instrument and system

studies for the purpose of achieving the "ultimate" in gravity and magnetic

r field surveys from space. According to present concepts, the space vehicle

for these surveys will be a Tethered Satellite System (TSS) and one of the

candidates for the gravity sensor is the cryogenic gradiometer under

development by Paik and al. (1981). With the potential of the space shuttle,

the tethering concept is under investigation for a number of applications.

Currently, NASA, in a cooperative program with Italy, is working on the

advanced development of a tethered vehicle and tether mechanism for possible

test flight in 1987. A number of potential applications are described by Bekey

(1983). Gullahorn and al. (1984) gave a presentation on: Feasibility of Gravity

Gradient Measurements from a tethered Subsatellite Platform (EOS Vol. 65, No.

28 Abstract). NASA's objective with the gradient measurements from a

tethered satellite is the achievement of higher resolution in gravity

measurements.
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3.5 Data Processing and Adjustment Techniques

Most of the algorithms for estimation of harmonic coefficients from various

gravity related observations are based on the standard least squares

adjustment. From the observations of each type of measurements, normal

equations are formed and these are combined by a weighted least squares

adjustment. The increasing quantity of the observations and the requirements

for higher degree of coefficients made the use of rigorous least squares

procedures impractical. The same situation applies to the use of the simple

least squares collocation, due to the large matrices which must be inverted.

Various authors designed and used different simplified approaches (see

previous sections on global gravity models) to alleviate the computer burden;

however, this could not be done without paying some price for the shortening

of the computations. If the expansion is truncated, say at degree 36, which

can be handled comfortably by the average computer, the finer detail of the
gravity field is not adequately represented in the results. Therefore, the

usefulness of the model is limited. If the developments are carried to higher

degree and order, say 180, the percentage errors of the coefficients usually

attain 100% around degree 100 of the expansion.

Recently several studies have been accomplished to find solutions which

could improve the present situation and together with the improvement of the

computer technology (supercomputers) would be capable to handle the

ever-increasing amount of observations and to produce accurate high degree

solutions.

Colombo (1979, 1981a), utilizing the symmetries of data on spherical grids

and relations between spherical harmonics and Fourier series, developed

efficient algorithms for the estimation of spherical harmonics to high degree.

Algorithms are derived for the evaluation of harmonic coefficients by numerical

quadratures, and it is shown that the number of operations is the order of N3

for equal angular grids (N is the number of lines of latitude, or the "Nyquist

frequency" of the grid). For the error estimation of the coefficients, Colombo

utilizes the error measure of least-squares collocation and derives efficient

algorithms for implementation on the sphere. The principle is that for
"regular" grids, the variance-covariance matrix of the - data consist of

"Toepliz-circulant blocks", so it can be both set up and inverted very

efficiently (Colombo 1981). Efficient methods for computation of covariances
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between area means is described, and numerical examples are demonstrated in

the report.

A real data set of 5* x 5' mean gravity anomalies obtained from Rapp's

(1978) V x V mean values was used for the demonstration of the use of

optimal estimators. The results are compared with Rapp's coefficients obtained

by numerical quadratures up to order 36 from the original 1' x 1° data. The

collocation solution (Colombo 1981) follows very closely the values of Rapp's

solution, considered "true" values because of the much finer V x P grid.

The Colombo (1981) algorithms for harmonic analysis have been

implemented for global 1' x V anomalies by Hajela (1984). The original

Colombo algorithms were modified before their use for the optimal estimation of

the coefficients complete to degree and order 250 and for their error

estimates. This was necessary due to the large array size requirements for

the P" x 1* anomalies.

To retain the efficiency in the computation of the coefficients, it was

required that the variances of all anomalies, in a latitude band, be equated to

the average value for that band. This gives the correct values only for a

pair of coefficients (8nmSnm) for any particular degree and order. The

variance for each coefficient in the pair is arbitrarily chosen equal (Colombo

1981, Hajela 1984).

The data set used in this study is the set of harmonic coefficients to

degree 180 developed by Rapp (1981), termed data set A. From Rapp's

coefficients, Hajela computed a global set of I* x 1* mean anomalies. These

anomalies then were used to derive potential coefficient sets using optimal

estimation procedures. For the anomaly data, several different error estimates

were assumed. Rapp (1981) also computed a global V x 1 anomaly set (64800

values), adjusting a combined set of satellite derived coefficients to degree 36

with a combined terrestrial set of V x 1" mean anomalies. This second set

was also used in Hajela's study, termed anomaly set B. Several sets of

harmonic coefficients were developed from the two sets of global mean

anomalies using generally two sets of anomaly error estimates. One set termed
"realistic" (error estimate A) was computed as the average variance in each

latitude band from estimates of 1' x 1" anomaly errors; anomalies computed

from potential coefficients being assigned standard error of 30 mgal. The

average anomaly error in a latitude band ranged from 30 to 4 mgal. Error

estimate B (idealized version): with no variation in latitude and an assigned
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values of *5 mgal. Several other anomaly error estimates were also used in

various tests.

Anomaly set B with error estimates A and B was used for the computation

of potential coefficients complete to degree and order 250. These are

compared with Rapp's (1981) set of coefficients (data set A). The improvement

of the coefficients, per degree, due to the use of optimal estimation over

Rapp's coefficients using de-smoothing factors is about: 8% at degree 60, 11%

at degree 120, and 33% at degree 180. In optimal estimation, the total

percentage error per degree does not exceed 100% at degree 250.

There is no discontinuity in the degree variances of optimally estimated

coefficients at degree 60 and 180. Colombo (1981a) tested his algorithms for

optimal estimation of potential coefficients with a global set of 5 ° x 5'

anomalies. He estimated that two hours of CPU times will be required for the

computation of coefficients to degree 180 with a global set of V 1 1 ° anomalies

on an Amdahl 470 V/6-11 computer. With a faster 470 V/8 computer, Hajela

used about 60 minutes for the computation of coefficients to degree 250.

S.C. Bose and al. (1983) Applied Science Analytics, Inc., Canoga Park,

California, examined the optimal estimation of harmonic coefficients to high

degree from gravity anomalies available globally. The basic method is the

least-squares collocation and similarly to Colombo's (1979,1981) approach,

consist of the exploitation of the grid structure of the covariance matrix,

thereby dramatically reducing the computational requirements. This study is

an extension of Colombo's work. The authors fully explore the structure and

effects of "rotational symmetry", i.e., the sample need not be uniform over all

latitudes in the grid; and consider meridianal and equatorial symmetries for

the reduction of the computations. The study shows that each parallel should

not have the same number of data samples. At high latitude the distances

between sample points become less and less. This crowding of sampling is

ill-conditioning of the data covariance matrix. When data will be available

over polar regions, a complete global solution of the gravity field will be

necessary; therefore the "thinning" of the sample data and avoiding the

ill-conditioning problem without increasing computational cost is significant.

The study presents the concept and outlines the general approach to the

solution. Computational cost comparisons for different types of symmetries are

tabulated.

Rapp (1984) reviewed some of the methods that can be used for the
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combination of satellite and terrestrial gravity data for the development of

high degree spherical harmonic coefficients. After a short outline of an

adjustment process using satellite data only and a discussion of gravity

anomalies and the boundary condition, (defining gravity anomalies) the report

outlines a combination method of satellite and terrestrial data by combining

the normal equations of the two types of data in a least squares sense. In

this case no corrections are applied to the terrestrial anomalies due to the

topography; they are interpreted as surface free-air anomalies and the series

are being evaluated at the surface.

The method for the combination of satellite and terrestrial measurements is

based on the orthogonality relationship between gravity anomalies and

harmonic coefficients. The concept was initiated by Kaula (1966) and utilized

by Rapp (1978, 1981). In the previous applications of this method, two

assumptions were made, namely the spherical approximation and that the

gravity anomalies are on the surface of the reference ellipsoid. Using

Pellinen's (1983) relationship between the I and m component of the disturbing

potential and gravity anomaly on the ellipsoid in terms of the coefficients Cl,,,

Sjm, Rapp derived expressions for corrections to the coefficients computed by

the orthogonality relationship from the anomalies on the ellipsoid. Applying

the corrections, the results will be consistent with the coefficients obtained

from satellite data.

The assumption that the gravity anomalies are on the surface of the

ellipsoid is also inaccurate. They are free-air anomalies on the surface of the

earth. Therefore, for the application of the procedure described in the

previous paragraph, they should downward continued to the ellipsoid. To

avoid the problems regarding the validity of the analytical continuation

technique, the study suggests upward continuation of the surface anomalies to

a bounding sphere (The Brillouin sphere) enclosing all the topography. This

would be an alternate approach to both the downward continuation and the

ellipsoidal problems. Correction terms were derived to the orthogonality

- formula for the effect of the upward continuation. For the 180 x 180 Rapp

(1981) coefficients, using a global set of I" x I" mean elevations, correction

terms were computed. The comparison of the results with the 1981values gave

the percentage error in the coefficients caused by the neglect of elevation

effects (use of uncorrected anomalies) and of the ellipticity (use of spherical

approximation formulaes). From the plot of the errors it can be seen that the
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elevation effect is small: 1% at low degrees and slowly rising to 3% at degree

180. The effect of spherical approximation is large: 10% at degree 75, 20% at

degree 130, and 31% at degree 180. The anomaly and undulation errors caused

by the elevation and ellipticity effects are tabulated. The undulation error by

degree is 20cm at degree 2 and drops below 3cm for all degrees above 20.

The cumulative undulation error increases slowly from 20 to 34.4cm at degree

180. Anomaly errors gradually increase to 3.12 mgal at 180 degrees. The

report points out that undulation errors are the largest in the polar regions

and in high mountain areas or regions of high vertical anomaly gradients

(Aleutian region), when the errors can reach 80 cm.

Some details and alternate adjustment techniques are discussed for the

combination of satellite and terrestrial data using the orthogonality

relationship and gravity anomalies on the bounding sphere. The end products

are the adjusted potential coefficients and adjusted anomalies on the bounding

sphere. These anomalies can be developed into high degree coefficients by

Colombo's procedure (Hajela 1984). The combination solution can be

accomplished with the rigorous formation of the normal equations. It is

suggested in the report that the large computer requirement can be managed

by the use of a supercomputer; or Colombo's (1981a) technique, where the

unknown coefficients are ordered in a way that the normal equations are block

diagonal, reducing the computer time substantially. After the combination

solution, a new set of harmonic coefficients can be computed. This expansion

can be developed to degree of 250 (Hajela 1984).

Another recommendation of the Rapp (1984) report is to use 0.5" X 0.5"

block size for the mean anomalies globally where it is available. This set of

anomalies should be upward continued to the bounding sphere. A global set

of 0.5" x 0.50 mean anomalies can produce harmonic coefficients to about 360

degrees. Obviously the solution will be deficient in areas lacking data.
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4. TEN UTILIZATION OF SPHERICAL HARMONIC MODELS IN GEODESY

The availability of spherical harmonic expansions to high degree (Rapp

1978, 1981; Lerch and al. 1981; Hajela 1984) made possible the use of these

expansions for many geodetic and geophysical applications (Tscherning 1983).

These expansions, together w.Lh the expansion of topography and of the

potential of the isostatically compensated topography (Rapp 1982) give many

computational advantages as compared to the techniques without the use of

the series.

The first obvious use of the coefficients of the harmonic expansions of the

gravity potential is the computation of quantities of the gravity field such as:

gravity anomalies, height anomalies, components of the deflection of the

vertical, etc. For the computation of these quantities, very efficient

algorithms have been derived and are in general use today (Rizos 1979;

Colombo 1981; Rapp 1982; Tacherning and Poder 1982; and Tscherning and al.

1983). In Tacherning and al. (1983), the four above referenced programs are

briefly described and intercompared for results and to obtain timing

comparisons.

The Rizos (1979) program computed the height and gravity anomaly from

harmonic coefficients for points of a two dimensional evenly spaced geographic

grid. The area of the computation can be local, regional, or global.

The Colombo (1981) computer program calculates the height and gravity

anomalies from potential coefficients for a global grid only at specified latitude

and longitude intervals. A subroutine was designed for the computation of

area mean or point values. The Legendre functions are first computed for the

grid interval. Due to the grid symmetry with respect to the equator, the

values are computed for latitudes north of the equator. Then by a Past

Fourier Transform (FFT), sums of series are computed along the latitude rows.

This procedure is implemented by subroutine FFTCC of the IMSL subroutine

library.

The Rapp (1982) program is for the computation of the height anomaly,

* gravity anomaly, gravity disturbance, and the components of the deflection of

the vertical from spherical harmonic coefficients. The program has been

tested with coefficients up to degree 180 and can be extended higher. The

program calculates the above listed quantities on a point to point basis.

The Tscherning/Goad Program (Tacherning and al. 1983): The original
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Tscherning and Poder (1982) program extends the derivatives of the potential

to the second derivatives and uses the Clenshaw summation, which has a

numerical advantage compared to the usual methods, consisting of a decrease

in the loss of significant digits during the summation. With this algorithm it

was possible to evaluate the sum of spherical harmonic series with degree and

order 180 on a computer using only 10 1/2 significant digits (Tscherning and

al. 1983).

The original Algol programs given in Tscherning and Poder (1982) was

translated into Fortran by Goad, adding subroutines needed for the actual

computations.

The aforementioned four programs have been intercompared by test runs

on the Amdahl 470 V/8 computer. Timing comparisons are tabulated in

Tscherning and al. (1983). Considering point to point calculation times, Rapp's

and the Tscherning-Goad programs are comparable. Rizos' is fastest, with 0.46

seconds, and Tacherning/Goad next with 1.91 seconds and the Rapp program a

distant third with 15.59 seconds (no provision is made in the Rapp program

for data given on a uniform longitudinal grid). The time comparison of the

computation of height anomalies on a global V x le grid gave 47 seconds for

the Colombo program and 66 seconds for Rizos. In the other two point by

point programs (Rapp and Tscherning/Goad) the results computed at one

latitude were extrapolated, resulting in relatively poor time.

It can be seen that efficient algorithms exist for the computation of

gravimetric quantities from spherical harmonic expansions of high degree. For

limited or global coverage of one or all five quantities, the appropriate best

fitting program can be selected.

Using high degree and order coefficients, the height anomalies can be

computed globally with '1.2m standard error. If the degree and order of the

coefficients is increased to N = 360, and with some improvements of the

coefficients, the standard error of the height anomaly could be improved to

0.5m (Tscherning 1983). The height anomalies can be used for conversion of

ellipsoidal heights into normal heights, reduction of distances, etc.

High degree spherical harmonic expansions are used as the reference-base

for local gravity field determination, e.g. Forsberg and Tacherning (1981),

Lachapelle and Rapp (1982), and Sunkel (1983). In the future, the harmonic

series may replace the role of normal potential.

Due to the easy computation of geodetic quantities of the gravity field

44



from harmonic series, the contribution of the high degree expansions can be

subtracted from the point values of these quantities. The residuals will have

empirical covariance functions for which the first zero value is located at a

* spherical distance of about 7" for height anomalies, 45' for gravity anomalies,

and 20' for the longitude component of the deflection of the vertical

(Tacherning, 1983). Therefore, the spherical caps used for the evaluation of

integral formulae will be much smaller, and local collocations require a much

smaller data collection area. In addition, many elements in the normal equation

matrices may be set equal to zero, resulting in only about 1% error and

substantial savings in computation.

Another beneficial effect of using high degree harmonic coefficients is that

the long wavelength part of the topographic effects are included in the model.

For the remaining effects, the topography must be considered only for a short

distance from the computation point.
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5. THE LOCAL AND REGIONAL GRAVITY FIELD

The description of the gravity field of a limited area (local or regional)

usually consists of the determination of some functionals of the anomalous

gravity potential in a particular area and/or at selected points. These

functionals or gravimetric quantities are: the components of the deflection of

the vertical (Q,7); the height of the geoid (N); the gravity anomaly (Ag) etc.

Mathematically these functionals can be represented by integral formulae or by
spherical harmonic series. The two types of formulas are equivalent

theoretically, but in the practical work they are different due to the

differences in the types, spacing, distribution, and accuracy of input data

used for the computations (mean or point anomalies for the integral formula

and geopotential coefficients for the series of spherical harmonics).

In this section the following topics are reviewed: spectral properties of

data types; representation and estimation techniques of the local gravity field

by integral formulae and collocation; prediction of gravity outside the earth

from surface data and improvement of local and regional gravity fields by

airborne gradiometry. Representative recent works in each subject area are

reviewed and discussed. It is relied on lectures of the Beijing International

Summer School, China, 1984, Schwarz, K.P. (1984) and on the published works

of other authors in this subject area, e.g. Forsberg, Tscherning, Siinkel, Cruz,

etc.

5.1 "Data Types and Their Spectral Properties"

In his lectures at the Beijing Summer School K.P. Schwarz (1984a) under

the above quoted title presents and analyzes a number of topics relevant to

the representation of the local, regional and global gravity fields. Various

parts of the lecture are summarized and freely quoted in the sequel.

The quality of local gravity field estimation depends on the following

factors:

- the density of the available data

- area coverage (global or local)

- measurement accuracy

- the sensitivity of the gravimetric quantity (functional), to be estimated,
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to the given data set.

This can be assessed by transforming the measurements into the frequency

domain and comparing the approximation obtained to the rigorous

representation of series of spherical

harmonics. In view that all functionals and data types can be represented in

the form of the series of spherical harmonics, the approximation error is due

only to the factors listed above.

The spectral sensitivity of some specific functionals are evaluated with

respect to the following frequency ranges:

2 4 low C 36

37 C medium 4 360

361 4 high < 3600

36001 C very high 4 36,000

The spectral sensitivities of geoid height (N), gravity anomaly (Ag) and of the

second order radial gradient of the anomalous potential (Trr) are computed in

percentage of the total value of each spectral range (Table 5.1). The

computations were made by the use of the global covariance model of

Tacherning and Rapp (1974).

FREQUENCY RANGES

FUNCTIONAL low med. high v. high

N 99.2% 0.8% 0.0% 0.0%

Ag 22.5% 41.9% 32.7% 2.8%

Trr 0.0% 0.8% 39.0% 60.2%

Table 5.1. Spectral sensitivity of some functionals. After
K.P. Schwarz (1984)

It can be seen from table 5.1 that for accurate determination of N the low and

medium frequencies are required with high accuracy, and for the Trr the high

and very high frequency ranges are dominant. There is an exact

correspondence between the frequency and the spacial domain; from the

spectral sensitivity of a functional, the spacial representation of the frequency

range in gridded form can be determined (data density).
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The local gravity field estimation involves a specific data distribution, and

the question is how well a specific functional can be determined from it. For

example, consider a set of errorless gridded data. The spectral representation

of this spacial data set is a truncated series of spherical harmonics. The

estimated coefficients will contain systematic errors because the data contains

the effects of all frequencies. This effect is the aliasing and it is a source of

errors of the spectral representation. If there is only a local data set, the

low frequencies cannot be properly determined. This is known as spectral

leakage. The integration formulas will have this problem if the integration is

extended only over a limited area. The measuring errors of the data add

additional complications.

The steps to obtain a good estimation of a local gravity field according to

Schwarz's lecture are: first, the spectral sensitivity of the functional to be

computed should be analyzed; second, data types which contribute most to the

sensitive part of the spectrum should be selected. The aliasing and spectral

leakage problems can be minimized by existing standard procedures. The

effect of measuring errors can be reduced if their statistical behavior is
known. In addition to the methods listed above, the problems of combining

several data types with different spectral and statistical characteristics must

be solved. This leads to the characterization of current and future data

types.

The current and future data types are characterized (Table_5.2) according

to: spectral resolution, data density, data coverage, data distribution, and

noise spectrum. These characteristics are useful for optimal data combination

for the gravity field spectrum. Theoretically, each data type contains the

total spectrum; however, in practice the measuring process acts as a bandpass

filter limiting the range of the spectrum. Therefore, a single data type cannot

resolve the complete spectrum and it is necessary to combine different types

of measurements to obtain a homogenous spectral resolution.

It can be seen from Table 5.2 that the low frequency information comes

from satellite observations and no other source is in sight for this frequency

range. The medium range is currently determined from 1 x le mean gravity

anomalies on land combined with satellite altimeter data over the oceans. This

frequency range will be improved by satellite to satellite gradiometry, if these

programs will become operational. The above types are regular in distribution
and global in coverage, therefore their use in integral formulas (space domain)
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or in series of spherical harmonics (frequency domain) should yield the same

accuracy. All the other data types cover only part of the space domain,

therefore integral formulas will give better results.

The high frequency spectrum is currently resolved by mean anomalies of

5' K 5', or deflections of the vertical. In the future, airborne gradiometry and

inertial surveys may contribute to this frequency range, provided the

projected accuracies of I mgal and 0.3 will be realized. The very high

frequency range currently is very little known. Airborne gradiometry and

height data may improve the situation in the future. Some of the very high

frequency range is removed from gravity anomalies by terrain corrections

computed from height data on a grid (1km x 1km). This removes the

frequencies dependent on the topography. The remaining part represents the

anomaly variations caused by density changes. At present, very little is

known on the spectral power of density changes in the very high frequency

range. For the purpose of optimal spacing of gravity and height

measurements, a detailed numerical analysis is recommended by K.P. Schwarz.

A spectral analysis of high density gravity and height data would indicate

whether or not the upper part of the very high frequency spectrum can be

computed with sufficient accuracy from height data only. If yes, the interval

of gravity measurements can be larger than those of height data, and the

existing height data can be used with benefit. Airborne gradiometer and

surface density data would provide in the future material for spectral analysis

of this frequency range.

The following parts of the lecture (Chapters 5 and 6) discuss the concepts

and mathematical treatment of spectral analysis of discrete data which apply to

local gravity field approximation. The one dimensional case is discussed first,

then the extension to a two dimensional surface. Correlation and spectral

density functions are described. The main formulas are given with derivations

and some of the literature is listed for more details. For the one dimensional

case: Popoulis (1965), Bendat and Miller (1982). For a good discussion of all

essential formulas for the two-dimensional planar case, I recommend Sideris

(1984), and for the spherical case, Colombo (1981a). These topics have also

been treated in textbooks and in the related literature and will not be

discussed here. It should be noted, however, the use of convolutions

theorems in gravity field approximations. The convolutions of two functions,

in general, can be interpreted as the filtering of one function by the other.
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Examples are the Stokes and Vening-Meinesz integrals. These two integrals

can be considered as two different filters applied to the same gravity anomaly

function (Ag). The theorem states that "convolution in the space domain can

be replaced by multiplication in the spectral domain and vice versa". All of

the basic integrals in gravity field estimation can be expressed as convolution

integrals; therefore this theorem permits the replacement of integration (space

domain) by multiplication in the frequency domain. This technique is very

advantageous because recently gravity and height data are available

frequently in gridded form, and Fast Fourier Transform (FFT) allow

performance of discrete Fourier transformations and convolutions much more

rapidly than integration. Detail for the Fourier approach to Stokes' and

Vening-Meinesz' integral are given in Jordan (1978), and details of the terrain

correction integral in Sideris (1984)

The Spectral Analysis of Global Gravity Data is discussed next in

connection with the use of a set of harmonic coefficients, as a reference field

for local or regional gravity data.

The concepts of spectral analysis extended to the sphere, the series of

spherical harmonics, and their convergence, is widely covered in the

literature, e.g. Moritz (1980). The application of the concepts to the geodetic

problems are given in detail in Meissl (1971). Detailed numerical formulas and

extension of FFT to the sphere is discussed in Colombo (1981). In principle,

the transform pair for the representation of the anomalous gravity field on

the sphere is equivalent to the transform pair representing the gravity field

on the plane; however, the topology differences of the two surfaces cause the

direct application of FFT techniques to the sphere to be impossible. In

Colombo (1981a), it is shown that spherical harmonics are finite sums of

two-dimensional Fourier harmonics, and this can be used to design efficient

algorithms for spectral analysis.

Global data available at the present time for spectral analysis are:

Satellite orbital perturbations, satellite altimeter data, and mean gravity

anomaly data. The combination of these three types of very different

information on the gravity field is still not on the desired optimal level. In a

typical procedure, the coefficients are determined in steps, e.g. Rapp (1981).
The weighting is of crucial importance in the combination of global and local

gravity data. To obtain proper weighting for a global model, the

determination of its error spectrum is necessary; this is difficult because the
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global model is a combination of different types of data with different error

characteristics. If a truncated series of harmonic coefficients is used as a

reference for local approximation to obtain a proper weighting between the two

data sets, the following questions arise (Schwarz 1984):

(a) "How much of the total spectral power of the anomalous gravity field

is contained in a solution of degree and order N?"

(b) "How good is the approximation given by a specific model; i.e., which

error spectrum is associated with the global solution?"

Practical procedures for weighted combination of harmonic coefficients and

local data are discussed in Wenzel (1982) and Sjoberg (1981).

Returning to the data sets used in a global solution, the characteristics of

these data is briefly discussed. Orbital perturbations can be considered to be

upward continued geoid undulations. Due to the attenuation, the short

wavelength part is smoothed out with the altitude. This effect and

measurement distribution problems are the principal reasons why only low

order harmonics can be determined from this type of data.

From altimeter data, the geoid over the oceans is obtained, provided the

sea surface topography can be neglected. The data are regular and the

measurement precision is sufficient for about 50km half wavelength resolution

(Cruz 1983). This would be adequate for a series expansion of 360 degree and

order, but a similar set of data is not available over land areas. Currently

1* x 1* mean anomalies are developed from the altimeter data and merged with

V x 1" mean gravity anomalies over land. Two particular problems emerge

with this data set: The effect of averaging and aliasing. Averaging changes

the coefficients. To recover the spherical harmonic coefficients of the point

gravity anomaly function the smoothing by averaging has to be reversed.

This 'desmoothing' can be done by optimal factors derived by Colombo (1981a).

The other is the aliasing, which is not eliminated by "desmoothing". These

errors are about 50% of the actual coefficient at the Nyquist frequency and it

is larger above. Therefore, there is a need to replace mean values with

smoothed values free of aliasing. Simulation studies to used filters to

estimated mean values performed by Jekeli (1981) eliminated the leakage

problem for the mean values, but not the aliasing. Schwarz's suggestion for a

possible way to obtain a set of smoothed values free of aliasing is: "to use a

bandpass filter on the power spectrum, obtain the autocovariance function by
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Fourier Transforming the results to the space domain, and estimate smoothed

values in the center of the block using this function". In addition to aliasing,

missing mean anomaly blocks and the errors in the data affect the

coefficients.

Recently, local data sets and height data are frequently available in

gridded form, and high degree geopotential models as reference fields are

available to provide low frequency features, therefore, the analysis of higher

frequency features in local areas became possible. Theoretically if a perfect

36 x 36 solution is available, a 10' x 10' field of local data centered on the

computation point is required for the resolution of all frequencies above

degree 36. To improve the wavelengths in the medium range and to help

spectral leakage, a radius of 20 degrees would be required instead of the 5

degree radius for a 10" x 10' local field. Studies by Lachapelle and Rapp

(1982) indicate, however, that the extension of the local area does not improve

the long wavelength features.

Here, like in the case of combination of global data sets, the weighting or

accounting for the actual accuracy of data sets in a combination solution is a

problem. Wenzel (1982) proposed the use of the error covariance functions of

various data types for the derivation of spectral weighting functions for an

optimal data combination. This approach is, in the judgment of Schwarz, "most

promising". An advantage of the method is that it can be extended to other

combination methods, i.e. it is not restricted to the integration method only.

Schwarz analyzed the covariance function behavior obtained by different

methods over the same test areas, using 5' x 5' mean anomalies referenced to

GEM-10 5" area blocks, in North America. The analysis was made by both the

space domain and spectral methods. The difference in the parameters of

autocovariance functions are tabulated for 16 sample areas in Schwarz (1984).

Two dimensional FFT methods have been used, which, in addition to the

efficiency, provide information on the local spectrum. New results on the

degree variances in the 200 C n '2900 are also presented.

5.2 Estimation of Gravimetric Quantities in Local and Regional Areas.

The estimation of the functionals of the anomalous gravity potential such

as deflections of the vertical, geoid undulations, mean gravity anomalies, etc.
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from the limited local or regional information usually is obtained by the use of

integral formulae. Best known examples are the Stokes and the

Vening-Meinesz integrals. Theoretically, the integration should be extended

over the whole earth and the gravity anomaly should be known at every

point. Practically, these conditions cannot be satisfied; therefore, these

integral formulae are usually modified to accommodate in combination, other

gravity related data, contributing in some form the information outside of the

zone of integration. The types of these information are: harmonic coefficients

of a series expansion of the global field; information on the topography in the

form of digitized elevation data, or information on the isostatic compensation of

the topographic masses. By the use of topographic information in the form of

gridded digital terrain models (DTMs), the local gravity field can be smoothed

by removing the effect of the topography calculated from the DTM. Terrain

corrected, gravity data are of course applicable not only in the integral

methods, but also in the collocation technique for the estimation of the gravity

field.

Since spherical harmonic expansions to degree and order 180 are available

(Rapp 1978, 1981; Lerch and al 1981) and expansions of the topography, of the

rock equivalent topography, and of the isostatically compensated topography

have also become available (Rapp 1982, Grasegger and Wotruba, 1983), these,

together with a fairly good coverage of DTM data, allowed a substantial

number of studies and numerical demonstrations for the estimation of regional

and local gravity fields. Some of these are: Lachapelle (1984, 1979);

Lachapelle, G. and K.P. Schwarz (1980); Lachapelle, G. and A. Mainville (1979);

Tscherning (1984, 1983, 1983a); K.P. Schwarz (1984a, 1983); Schwarz et al

(1983); Schwarz, K.P. and G. Lachapelle (1980); Siinkel (1984, 1984a, 1983a,

1983b); Siinkel, H. and G. Kraiger 1983); Forsberg (1984, 1984a); Forsberg and

Tscherning (1981); Rapp and Wichiencharoen (1984); and Moritz (1983, 1980,

1977).

5.2.1. Estimation by the use of Modified Integral Formulae.

Lachapelle (1984), in his lecture at the Beijing Summer School, discussed

the modifications of the basic integral formulae of Stokes and Vening Meinesz,

and of the topography integration formula for the deflection components, to

allow for the combination of all available data.

The free air gravity anomalies used in the Stokes and Vening-Meinesz
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integrals are reduced from the earth's surface to the geoid by the use of the

gradient of the normal gravity (0.3086 mgal/m). In mountain areas, the

vertical gradient of the actual gravity can differ as much as 0.1 mgal/m. This

can seriously affect the accuracies of the results. In the Molodensky

approach, the measured gravity remains on the surface of the earth and the

normal gravity is computed on the tell,'roid by applying the normal gradient

upward from the ellipsoid. The modified formulae (Moritz 1980, Sec. 48; and

Lachapelle 1984) for the height anomaly and for the surface deflection

components contain a first-order correction term (ge) to the anomaly on the

earth's surface (Ag* + g 1 ). It is shown in Moritz (1980) that the formula (g1 )p

for an arbitrary point P can be replaced by a given terrain correction

formula, if a constant density of topography and a linear correlation between

gravity anomaly and height are assumed.

The terrain correction formula (replacing the formula for g,) reveals that

the terrain correction is significant only over a terrain with rough

topography; therefore, the uncorrected Stokes and Vening Meinesz formulae

(neglecting the term gj) are fairly accurate approximations to the Molodensky

approach in flat areas. The correction terms are significant in mountain

areas, particularly for the computation of the deflection of the vertical. For

details see Moritz (1980, section 49). Numerical results for terrain corrections

for geoid undulations are in Section 3 of the Lachapelle (1984) paper. Four

different methods for the combination of Stokes' formula with spherical

harmonic expansions are discussed and the results of the computations are

tabulated. The spherical harmonic models GEM1OB, and GEM10C by Lerch and

al (1981) and two models of Rapp (1978, 1981) were used. All except GEM10B

are complete to 180 x 180. GEMIOB is complete to order and degree 36. The

gravity data in form of 5' mean anomaly coverage of North America was used

(Lachapelle 1978). Mean topographic heights of 5' were used in the Western

Cordillera mountain region for the Computation of the terrain effect. The

undulations obtained by various methods are compared with satellite Doppler

undulations (Tables 4, 5, and 6 of Lachapelle 1984). To show the improvement

in accuracy due to the combination of surface gravity data with harmonic

expansions, a comparison of Doppler undulations and those computed only from

geopotential coefficients is given in Table 3 of the referenced paper. The rms

values show improvements when models complete to 180 degree are used. Best

results of rms residuals of the order of 1 meter were obtained using Rapp's
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1978 model. The GEM1OB solution (36 x 36) gave an rms agreement of 1.7

meters. Rapp's 1981 180 x 180 set agreed to the order of 1.2 meters.

An analysis of various modifications of Stokes' function for the

improvement of geoid undulation computation accuracy was performed by Jekeli

(1981). Another recent study on data requirements and accuracy of geoid

undulation computation from gravity data is reported by Kearaley (1984).

The deflections of the vertical are much more sensitive to the gravity

anomalies in the vicinity of the computation point than undulations.

Therefore, deflections computed from harmonic coefficients only will be less

accurate than geoid undulations. A comparison of deflection components of 820

points in Canada computed from harmonic coefficients were compared with

astrogeodetic values. (Table 7 in Lachapelle 1984). It can be seen from the

comparison of astrogeodetic rms values with harmonic coefficient derived

deflection components that the deflections from harmonic coefficients only are

very poor. About 20% of the deflection signal comes from the coefficients,

while for the undulation signal the contribution of the harmonic coefficients is

above 90%.

Several methods for the computation of the components of the deflection of

the vertical from the combined effects of gravity potential coefficients, surface

gravity and topographic data are reviewed in Lachapelle (1984).

The Vening Meinesz formula was combined with collocation using harmonic

coefficients, gravity anomalies, and optionally, astrogeodetic data (Lachapelle

1977). In flat areas of Canada, accuracies of ro to r:5 were obtained as rms

differences with astrogeodetic values. The radius of the inner zone was I'

containing about 200 5' x 5' mean anomalies. The Vening Meinesz function was

unmodified. The modified function does not improve the accuracy in the case

of deflections, as it is discussed in Jekeli (1982). The computation software is

described in Lachapelle and Mainville (1982).

In mountain areas where local topographic data are available, the visible

topography and its isostatic compensation can result in about 80% of the

deflection signal, provided that the selected isostatic model is in fair

agreement with the reality. Results in the Swiss Alps by Elmiger (1969) and

in the North American Western Cordillera by Lachapelle and Mainville (1979)

confirm the estimate.

In mountain areas, where astrogeodetic deflections exist in close intervals,

a combination of these deflections with topographic-isostatic ones improves the
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accuracy. Elmiger (1969) obtained about :5 to 2:0 in the Alps.

Topographic-isostatic deflections alone may be significantly biased. Lachapelle

(1975) combined topographic-isostatic deflections with global data, such as

harmonic coefficients of the geopotential for the purpose of reducing large

scale systematic effects. The deflection components were the sums of the

contributions of: the low degree potential coefficients, the corresponding

coefficients of the isostatic reduction potential, and the topographic-isostatic

deflection components computed from the detailed topography using the

topography integration formula. Tables (9 and 10) in Lachapelle (1984),

extracted from Lachapelle and Mainville (1979) give some results obtained by

this method in the Canadian and New Mexico (White Sands) mountain areas at

selected astrogeodetic deflection stations. The rms differences with

astrogeodetic values are given for the topographic-isostatic components and

for the total components. In the Canadian Cordillera, mean differences

between the topographic-isostatic and astrogeodetic components are -0:28 (Q)

and (1:21 (q) and between the total and astrogeodetic components are 0:26 (Q)

and -0:22 (71). This indicates that the harmonic coefficients of the geopotential

and isostatic reduction potential do not remove significantly regional trends.

In the White Sands area, the predicted total deflection components agree

better with the astrogeodetic values than with the topographic-isostatic

components. Thus, the geopotential and the isostatic reduction potential

coefficients contribute substantially to the removal of regional biases. The

mean differences between the topographic-isostatic and astrogeodetic

components are: -V"37 (Q) and -1':92 (,n). These are reduced to 0:51 (Q) and

-0:02 (,q) between the total combined and astrogeodetic deflection

components.

5.2.2. Comparison of Gravimetric and Satellite Derived Undulations

Gravimetric geoid undutations were computed by three different methods

and compared with geoid undulations obtained from satellite Doppler data at

the same sites (Rapp and Wichiencharoen 1984). Twenty Doppler sites were

selected from the 65 in the United States from the Lachapelle (1979) study, for

the comparison of Doppler-derived and gravimetric geoid undulations in North

America. Ten of these sites were in the mountainous western United States,

where large residual differences were found between the Doppler derived and

gravimetric undulations. The other 10 stations were in the relatively flat
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eastern part of the United States. The original Doppler undulations were

corrected for a -0.4 ppm scale change and for a 4m Z axis bias. The

gravimetric geoid undulations were computed by: a) combining Rapp (1981)

potential coefficients to degree 36 with uncorrected 1 x V mean free air

gravity anomalies in a 10 ° cap surrounding each station, b) using Helmert's

second condensation procedure for anomaly reduction where terrain

corrections and topographic indirect effects are computed (10 stations in the

western U.S.), c) the use of potential coefficients to degree 180 (Rapp 1981).

The components of the gravimetric undulations and the differences between

these and the Doppler-derived values are tabulated. The effect of the terrain

correction is of the order of 1.8m and of the indirect effect is 15cm. The

mean difference between Doppler and gravimetric undulations for the 10

western stations excluding the terrain correction and indirect effect was 1.65m

with standard deviation of the difference of *0.96m. With the corrections, the

mean systematic difference decreased to O.lm * 0.93m.

In the eastern U.S. stations, where no terrain corrections are applied, the

mean difference between Doppler and gravimetric undulations is 0.42 * 0.55m.

The spherical harmonic coefficients to degree 180 gave results close to

those when uncorrected V x V mean anomalies were used. For the 10

stations in the western U.S., a difference of 1.27 * 1.07m was obtained. For

the eastern U.S. stations it was 0.45 2 0.62m.

5.2.3. On the Accuracy of Heiaht Anomalies and Deflections of the Vertical

Obtained from Combination of Mean Anomalies and Harmonic

Coefficients.

The accuracies of height anomalies and deflections of the vertical obtained

by the combination of harmonic coefficients and mean gravity anomalies was

investigated by Heck (1983).

It is known that the applications of the Stokes and Vening Meinesz

integrals require continuous gravity data over the entire earth. Since the

existing global coverage of gravity anomalies is neither continuous nor

homogeneous, in practice the integration is limited to a spherical cap around

the computation point. Because the gravity data usually is known in terms of

mean anomalies of surface blocks, the integrals are replaced by summations.

The outer zones are replaced or represented by a geopotential model.

Four types of errors in such combinations are considered in the Heck (1983)
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paper: 1) error due to the lack of higher degree coefficients, 2) errors in

the used set of coefficients, 3) error due to the loss of information by using

finite block size, and 4) errors of the mean anomalies. Error analyses reveal

that at the zeros of the kernel functions within the spherical integrals, the

error functions show local minima. This was the motivation for modifications

of the kernel functions by: Molodensky and al (1962), Wong and Gore (1969),

Meissl (1971), and Colombo (1977). The various approaches have also been

studied by Jekeli (1981), Rapp (1980), Chen (1981), Fell and Karaska (1981) and

Heck and Gruninger (1983).

The investigations of Heck show that the errors caused by the first two

error sources listed above show distinct minima if the integration radius is

confined to the zeros of the kernel functions. This characteristic suggests

that the Wong and Gore modification procedure be used for combining gravity

anomalies of a spherical cap and geopotential coeff" ients. It is emphasized

that the integration radius be extended exactly to the first zero of the

modified Stokes and Vening Meinesz kernel functions.

Using a recent geopotential model and mean anomalies of 2 to 10km side

length, absolute undulations have a global rms of i1 to 3cm; relative

undulations between points 50 to 100km apart have an accuracy of a few

centimeters. The deflections of the vertical have an accuracy to an order of

magnitude of 0:2 to 0:3 with 2 x 2 km 2 mean anomaly elements. The above

numerical estimates have been obtained by the use of hypothetical error

models; therefore, the results must be considered to represent only the order

of magnitude of the errors.

The study emphasized the importance of the consideration of terrain

corrections for gravity anomalies in rugged mountainous terrain. Substantial

systematic errors may occur using uncorrected anomalies for computation of

gravimetric quantities.

5.2.4. Estimation of Gravity Field by Collocation.

The integral procedures, such as Stokes' and Vening Meinesz', use one

type of data for the approximation of other functions of the gravity field.

Different types of data are frequently available, containing useful information

regarding the gravity field. As it is well known, the collocation method is

capable of using gravity dependent heterogeneous data to predict any other

gravity field quantity. It is also known that there is a strong correlation of
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the free air anomalies with elevation. This correlation results in a trend in

the deflections of the vertical, in the gravity anomalies, etc. which must be

removed before the use of the data for interpolation or before applying them

in collocation.

5.2.4.1. Forsberg and Tscherninz (1981). This paper describes various

methods for the computation of terrain effects applicable to the estimation of

gravity field quantities by collocation. The various "reduction" methods were

tested in two mountainous V x V areas in New Mexico. Both areas are

characterized by a North-South mountain chain 800-1500m above the plateau

which is about 1200-1400m high. In these areas, known gravity anomalies and

deflections of the vertical were predicted. The predictions were made by the

use of stepwise collocations, described by Tscherning (1974, 1978) and

previously used in Tscherning and Forsberg (1978). In the first step, the

GEMIOB set of harmonic coefficients was used. In the second step a set of

V 1 V mean gravity anomalies was used. In the third step, a local

approximation was computed using anomaly spacing of about 10km and a few

deflections 40km apart. For this step, local empirical covariance functions

were estimated for anomalies and deflections.

The predictions were carried out with the unchanged original data, and

with the data reduced with the following methods:

a) fixed sector topographic/isostatic reduction for a 6' x 7* area around the

test areas, Airy isostatic model, crustal thickness 32km and density

contrast (crust/mantle) 0.4 g/cm 3

b) fixed sector (6 x 7") reduction for the visible topography above sea level

c) residual terrain model (RTM) reduction with mean topography defined by a

bilinear interpolation in a 30' x 30' mean height grid, residual topography

taken into account in a fixed 3* x 4 sector.

d) RTM reduction with 15' x 15' mean height grid, residual topography taken

into account out to a distance of only 60km.

Both the point observations and mean gravity values were terrain corrected.
The RTM effects on the mean anomalies were very small, comparing the

original and the reduced observations, it is apparent that the major par, of

the change in the observed quantities is due to the effect of the isostatically

compensated topography. The choice of the isostatic parameters have little

effect on the variation. It is pointed out that some isostatic effect should

always be included to avoid the bias on gravity anomalies (and height
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anomalies) which occur when only the topography is removed. (Refer to Table

1 of Forsberg and Tscherning (1981). A total of 110 deflection pairs and 150

gravity free air anomalies were predicted and compared to the known

(observed) values. The mean values of the predicted deflection components

and gravity anomalies in the two I* x I* areas are tabulated with their

standard deviations. The values are tabulated in three variations according to

the point observations used: A) gravity plus deflections, B) gravity alone,

4 and C) no point values, only the I" x I' mean anomalies and GEMIOB

coefficients were used. The tabulation demonstrates the improvement of the

prediction when the effect of the terrain is considered. The rms error

decreased with a factor of close to 3 when terrain corrected data is used. It

is also shown that better deflection results are obtained using

topographic/isostatic reduction without any local gravity data (variation "C"

above) than by the use of all the gravity data without terrain effect

correction. It is concluded that it is possible to predict deflections of the

vertical and gravity anomalies in areas of rugged terrain with accuracies of 1"

and 3-4 mgal respectively from anomaly data spaced 6' apart, and when the

gravity field is smoothed by terrain corrections computed on the basis of

0.5 x 0.5 minute point heights.

If only rough height information is available (such as 5' x 5' mean

elevations), substantial improvements occur in the predictions. An example is

the geoid prediction in Greenland by Forsberg and Madson (1981). The study

shows that the collocation method yields results in areas of rough topography

comparable in accuracy to the results obtained in flat areas.

5.2.4.2. "The Geoid of Austria" by S~inkel. Another example of the use of

global geopotential and digital terrain models in combination with local gravity

information for the computation of the regional geoid is "The Geoid of Austria"

(Slinkel 1983).

For this work, the following data was used: The Rapp 180 x 180

geopotential model, 1" x P mean values of the global Digital Terrain Model

(DTM), a 20" x 20" digital terrain model of point values interpolated from a

1:500,000 topographic map of Austria [a more sophisticated program for digital

models of topography and rock densities is described in Steinhauser and al

(1983).), and 521 observed astrogeodetic deflections of the vertical. The

deflections are the results of an extensive program started in 1975 with new

instruments. The formal accuracies of t 0.2 - 0.3 seconds were changed to
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* 0.5 - 0.7 seconds as a priori estimates in the collocation. The deflections,

originally on a local system, have been converted to the geocentric Doppler

system of the Naval Weapons Lab (NWL 9D) and to the ellipsoid of the Geodetic

Reference System 1980.

The harmonic coefficients of the gravitational potential of the topography

and its isostatic compensation were determined from the DTM data. Then the

coefficients of the Rapp geopotential model and the topographic-isostatic

coefficients have been subtracted from each other and the effect on the

surface deflections determined.

The topographic-isostatic data reduction was calculated in four steps. In

the inner zone (r 9 2km), the exact parallelpiped formula was used, and in the

second zone (2 c r 4 38km),a much simpler formula. In zones 3 and 4, the

mass point formula replaced the exact method. The effect of the remote zones

(38 4 r < 150km) and (r ) 150km) were determined by interpolation from a

grid of 15' x 15' and 45' x 60' respectively.

The two parameter "attenuated white noise model" of Jordan and Heller

i (1978) was chose for the model of covariance functions. Height anomaly

covariance functions have been determined for 5 regions within the whole

area. A variance of 0.05m 2 and a correlation length of 35 km was obtained for

the area of investigation.

For the collocation process, a stepwise collocation solution was chosen,

with the following arrangements:

"At step zero, a subset of 30 approximately homogeneously distributed

vertical deflections have been processed. For this subset, the covariance

matrix, its inverse, and the solution vector have been calculated. With this

data,the non-processed vertical deflections have been predicted and compared

to the measurements. Those (10) vertical deflections, which showed the

largest discrepancies, were used as additional data in the next step. In this

way, the covariance matrix and its inverse and the solution vector

successively improved using block partitioning methods."

It is interesting to note the improvement of the prediction by the stepwise

approach with the increase of the amount of data. The rms vertical deflection

error is almost constant (about 2:0) for up to 25% of the total data, with 50%

of the data the error drops to 1'0, and with 90% the error is about (1:3. It is

also noted that the external prediction error estimates agree with the

collocation prediction error estimates for almost all points with 20%. This is
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an indication of the reliability of collocation error estimates.

The collocation contribution to the geoid height or the height anomaly

have been predicted for a (*,A) grid of 3' in latitude and 5' in longitude (2240

points). Due to the long CPU time for the estimation of the prediction error,

this was computed only for a few sample points. The estimated rms errors of

the relative geoid heights range between 24 and *14cm. The representative

estimate for the whole area was '8cm.

By adding the results obtained from the topographic-isostatic reduction

and from the geopotential model to the contribution of the collocation, and

applying the indirect effect, the geoid height and the actual height anomalies

are obtained. The contributions from the topographic-isostatic model and from

the geopotential model vary from 41.5 to 47.5m, and the collocation contribution

is between t0.5m after removal of a trend on the order of 3m. The effect of

the analytical continuation on the isostatically and gravity model reduced

potential is of 13cm in the Central Alps. The maximum difference between

height anomalies and geoidal heights is located at the "Grosslockner" massif

(3800m), and has a value of 35cm, which is in excellent agreement with the

formula given in Heiskanen and Moritz (1967, p.325).

A number of additional papers were presented on the geoid in Austria at

the XVIII General Assembly of IUGG/IAG in Hamburg, August 1983:

Bretterbauer (1983), Steinhauser and al (1983), and Erker (1983). A

comprehensive description of the work on "Geoid in Austria" is given in

German by Lichtenegger and al (1983).

Moritz (1983) in his report on "Local Geoid Determination in Mountain

Regions" reviews the methods for regional determination of the geoid or of

height anomalies from deflections of the vertical or by combination of

deflections and anomalies by collocation. Basic definitions and geometry are
reviewed, geoid determinations, reduction for curvature of the plumb line and

topographic-isostatic reduction of vertical deflections are discussed in the

classical and modern (Molodensky) approaches. The application of the

collocation is outlined and a summary of the geoid computation for Austria

(Sinkel 1983) is given.

At the IAG Symposium in Hamburg during the XVIII General Assembly of

IUGG/IAG, Aug. 1983, a paper was presented by Gurtner and Elmiger (1983)

summarizing the work done in Switzerland, in the past 15 years and currently,

regarding geoid and vertical deflection computations.
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5.2.4.3. Other Gravity Field Estimations by Collocation. An algorithm for the

prediction of free air anomaly is presented in Sunkel and Kraiger (1983). The

algorithm was tested with 4 data sets in Austria. The computation method

used was least-squares collocation with parameters assuming a linear

correlation between terrain corrected free-air anomaly and elevation. The

computations showed that: a) point free air anomalies can be predicted with a

standard deviation of *3 mgal (or better) from terrain corrected free-air

anomalies with data density of better than 5 data per 100 km2 , b) the

collocation determined Bouger factor deviates from the standard value of 0.112

mgal/m less than 5% with an rms error of *3%; c) the covariance function of

terrain corrected and trend reduced free-air anomalies agrees very well with

the gravity anomaly covariance function obtained from topographic-isostatically

reduced vertical deflections.

The actual accuracies of the predictions, by comparing predicted values to

non-process measurements were: in the north-east foothills of the Alps the
prediction error for the free-air anomalies was 23 - 4 mgal; in the eastern

foothills 22 mgal; and in the central Alps *10 regal. The *10 mgal error is

prebably due to the incomplete terrain correction of free air anomalies.

Tscherning (1984) reviews the theory and the steps of the implementation

of the use of least squares collocation for computation of the disturbing

potential and related parameters. It is shown how to reduce the number of

observations under certain conditions in local solutions. The effect of the

smoothing of the gravity field, achieved by subtracting out the contribution of

the topography and eventually of the geological structures, is one of the

topics discussed in detail. The computer processing is described, dividing it

into separate steps. Each step is illustrated in Tscherning (1982). It is

shown that the collocation method is a very powerful tool to solve geodetic

problems and has two major advantages, one being that it can process

heterogeneous data, and the other being its ability to compute error estimates.

Tscherning (1981) compared collocation with other methods and concluded that

other methods "having a sufficiently solid theoretical basis" would give

comparable results.

Forsberg (1984) treats and analyzes a number of topics, all related to the

modeling of the local and regional gravity field. The first topic is the

combined collocation and geophysical inversion procedure for modeling. The

term "gravity field modeling" in contrast to the geodetic interpretation of
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representing the external potential of the earth, in geophysics "stands for the

process of determining internal density distribution of the earth consistent

with the observed outer field". The geophysical modeling of the gravity field,

therefore turns out to be the determination of the external gravity potential

due to density distributions. Our current knowledge of density anomalies

contributes only to the shorter wavelength part of the gravity field. The

longer wavelength parts can be obtained from spherical harmonic expansions,

termed "external" modeling in the report. The "external" and "internal"

modeling could be carried out simultaneously by combined versions of

collocation and geophysical inversion. The results: the external gravity field

and density information could be obtained simultaneously. The theoretical

background is outlined regarding density anomalies and an outline is given in

principle on the combination of inversion and collocation for gravity modeling

to include density (non-gravity) information in gravity field approximation.

The basic terrain reduction methods are reviewed in the follow-on

sections. It is pointed out that the conventional gravimetric "terrain

correction" is not a terrain reduction; the term is used in the report for a

small non-linear correction to the Bouger reduction. A FORTRAN program for

the computation of terrain reductions for gravity anomalies, geoid undulations,

and deflections of the vertical is listed in the appendix.

The accuracy of the "linear approximation" (an approximative terrain

reduction), used for error studies and FFT techniques, is investigated and it

is found that the approximation is usually acceptable for theoretical models

and for actual data. By assuming the validity of linear approximation FFT

methods for terrain effect computation are outlined.

Error studies are made on the Digital Terrain Model (DTM) resolution

requirements. Formulae and error diagrams are derived for the computation

of rms errors of terrain effects on gravity anomalies, deflections of the

vertical, and height anomalies on the basis of spacing of elevation data and on

the covariance functions of the topography. The effect of topography is

studied by investigation of empirical covariance functions in five different

areas of the United states. These studies resulted in actual empirical

information on covariance functions for topography and gravity. In addition,

information on magnitude of terrain corrections and of RTM geoid effects are

obtained. Information is given on the degree of smoothing obtained from

terrain reductions of actual gravity data.
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Finally, from isostatic reductions of satellite altimetry data in two areas

of the Pacific, a relationship is derived between ocean geoids by altimetry and

those computed from bathymetric data.

5.2.5. Prediction of Gravity Outside the Earth From Surface Data.

The prediction of the gravity disturbance vector at high altitudes is

investigated for several technical reasons, such as high altitude gravity

experiments, inertial navigation, etc. The task is to estimate the gravity

disturbance vector components, gravity anomalies, or other functions of the

gravity potential at altitudes from surface gravity data, with a theoretically

valid and computationally manageable and feasible procedure. In addition, it

is desired to account for all error sources involved during the process,

determine the propagation of these errors into the results, and obtain at the

end a reliable error estimate for the final products. Basic steps of possible

procedures such as gravity reduction methods, computations of mean

anomalies, an techniques for upward continuation of gravity are well known,

however, the actual work performed in this area to date, is experimental in

nature.

Some of the recent studies on this subject, selected for more detailed
description are S(inkel (1984a, 1981), and Cruz and Laskowsky (1984).

5.2.5.1. Prediction of the Gravity Disturbance at Altitudes. Sunkel (1984a)

examines four approaches: The Green's approach, by representing the

external disturbing potential with a linear combination of a single and double

layer potential; the surface layer approach; a combination of analytical

continuation down to sea level with the Pizzetti-Stokes method; and the

collocation approach. Each method has its advantages and disadvantages. The

integral formulae have the common assumptions that: a) gravity anomalies are

given at every point of the earth, b) only gravity anomalies are used as data,

and c) all data are exact. Obviously, these assumptions are never met. The

advantage of the integral formulae is that the inversion process is performed

analytically, resulting in a very fast and simple process for the computation of

gravity field quantities. Conceptually, the Least Squares Collocation (LSC) is

superior to all other methods. It combines heterogeneous input data,

downward continuation of surface data, smooth interpolation, upward
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continuation, noise filtering, and estimation of parameters. "Theoretically the

whole apparatus of LSC can be directly applied to the unreduced data as

input yielding any estimable gravity field quantity as output" (Sunkel 1984a).

Theoretically LSC seems to be the ideal tool for the tasks under discussion,

however, the solution of a very large system of equations with a fully

occupied matrix makes it infeasible in practice (Nice example for the "balance

of difficulties", Sunkel 1984a).

The logical solution, therefore, is to combine the advantages and avoid the

disadvantages of each method. See Lachapelle (1975, 1977) for the computation

of deflections of the vertical, height anomalies, and gravity anomalies. Sunkel

formulates the "ultimate" combination as the combination of LSC with integral

formulae, high degree earth model, and the best possible topographic

information.

Turning to the currently used procedures for the determination of the

disturbing potential above the surface of the earth, the problem is usually

treated in two steps: a) prediction of gravity anomalies at the surface or at

the sea (zero) level, in most cases, in the form of mean anomalies of various

block sizes; b) application of one of the boundary value solutions for the

computation of the disturbing potential. Gravity anomalies are used, not only

because they are the most frequently available form of gravity information,

but also for the reason that the boundary value solutions are based on

gravity anomalies. Concerning the prediction of gravity anomalies at the

earth's surface, we are reminded of two facts from the literature and

experience. One is that the quality of prediction (interpolation) depends on

the variance and the correlation length of the free-air anomaly covariance

function, in addition to the data density. The second fact is that free-air

anomalies are strongly correlated with elevation. In areas of rugged

topography, large variance and small correlation length can be expected. This

situation will result in unreliable interpolated values. The data should be

reduced to decrease the variance and increase the correlation length. In

addition, the gravity data in areas of rough topography are usually scarce;

this further aggravates the situation. The procedure in mountainous areas,

therefore, will be: removal of the effect of topography, (reduction)

interpolation along the smoothed surface of the reduced data using LSC and

restoration of the removed topographical effect. Two of several prediction

techniques are recommended for the mean anomalies at the earth's surface.
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The first is least square collocation with the parameter model. The iterative

procedure is based on terrain corrected (TC) free-air anomalies; details are in

Siinkel and Kraiger (1983). It was tested in Austria both in flat and rugged

areas, and it is considered the "most practicable" for free-air anomaly

prediction along the earth's surface. A fast algorithm by Sideris (1984)

computes terrain corrections on a grid using gridded topographical data and

FFT technique. The second technique is LSC and topographic-isostatic

reduction (TIR). This approach is well known and is frequently used. This

method also assumes a compensation model and an average density value,

which are wrong in most cases. The differences between the two methods are

as follows: In the first approach the effect of the topography is removed

using a best possible estimate for the average density in terms of the

parameter b (Bouger factor), and in the second approach a standard density

is used; in method one the trend is optimally estimated, and in method two the

isostatic compensation (a user selected model) takes over the parameter model

of the first method. It is well known that the actual density compensation is

largely different from an ideal model, especially in small local areas. Lastly,

the first technique can process only gravity anomalies and requires an

iteration process, and the second technique can process any type of data with

no iteration required. Both approaches have advantages and drawbacks; the

first method is considered equal or superior for most circumstances, except

when combination of heterogeneous data is required.

The Stokes-Pizetti procedure for the determination of gravity field

quantities requires gravity anomalies at zero level. The analytical continuation

of all types of anomalies to the zero or sea level can be performed by various

methods. Several of these are discussed in the report. In the opinion of the

author of the report (Sunkel 1984), the LSC is the ideal tool for analytical

continuation of anomalies, or any other gravity field quantity, to zero level.

Used in combination with the quasi-isostatic anomaly of previously described

approach one, or applied to the isostatic anomaly of approach two, the results

will be analytically continued quasi-isostatic or analytically continued isostatic

anomalies at zero level, respectively. Both of these can be directly used in

the Stokes-Pizetti integral to calculate the disturbing potential outside the

earth's surface (after adding the indirect effect). Any other gravity field

quantity can be obtained from the disturbing potential by applying the

corresponding linear functional to the disturbing potential formula.
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In the chapter "Error Considerations", the errors entering into the

prediction of the disturbance vector are discussed in detail. The errors are

divided into four major groups, each containing the relevant error sources.

1.) Data reduction errors

a) errors due to terrain correction compensation

b) errors due to the DTM sampling rate

c) errors due to errors in the DTM data

d) errors due to the computation of TIRs

e) errors due to approximation of the analytical continuation

2.) Mean anomaly errors

a) errors due to data density and distribution

b) errors due o data errors

3.) Representation and errors due to mean anomaly errors

a) errors due to use of mean anomalies

b) errors due to mean anomaly errors

4.) Errors of data reduction effects on the estimated quantities, breakdown as

in 1.)

All of the above error sources are discussed in detail and their contributions

to the error budget of the disturbance vector analyzed. Methods of

computations and numerical estimates are give for most contributing error

components.

Another study by Sunkel (1981) estimates the accuracies of the Iravity

disturbance vector components at high altitudes from a given set of free-air

mean anomalies and their rms errors at sea level.

The arrangement of the mean anomalies is symmetrical with respect to the

computation point. The innermost rectangular zone, consisting of 5' x 5'

blocks of mean anomalies, covers an area of 2" x 2', 3' x 4% and 7" x 9"

according to varying cases of data distribution. The next zone of 15' x 15'

mean anomalies covers an area varying in size from 6" x 8" to 16" X 18. The

following rectangular area consisting of 1* x 1' mean values covers and area

changing from 26" x 30" to 38' x 42. Another zone of 5" x 5" mean anomalies

has two variations in coverage area: 50* x 70' and 60" x 100. The

remaining surface of the sphere (180' x 360") is covered by 5" x 5' blocks,

having larger rms errors. In total, there are nine variations of data

distribution. The assumed rms errors for the 5' x 5' blocks are *8 or '10
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mgal; for the 15' x 15' blocks *7 and *8 mgal; for the V x V blocks *4 and
*5 mgal; and for the 5' x 5" outer zones *3 and *5 mgal. In total, 18 cases

(according to distribution and rms errors) were considered in the numerical

computations.

Five altitudes for the computation point were used: 30,000, 40,000, 70,000,

100,000, and 200,000 feet.

Two methods were used for the computation of the disturbance vector

components. These are the integral formula for the gradient of the disturbing
potential, in terms of free-air anomalies and least squares collocation. For the

integral solution, the representation error was calculated in the frequency

domain. The results of the two methods differ by less than 10%. It was

expected that the results will differ only slightly if the gravity coverage is

reasonably good. This was confirmed by the numerical computations. An

optimal algorithm was developed for the collocation solution to take advantage

of the regularity and symmetry of the data distribution. From the numerical
investigations the following conclusions were made.

For radial components:

a) The error decreases rapidly if the number of 5' x 5' mean anomalies around

the computation point increases;

b) The larger the 5' x 5' data set, the smaller the representation error;

c) The effect of data errors decreases with increasing altitude;

d) The size of data area of strong contribution increases with the increase of

the prediction height, i.e. if the number of data blocks are constant, the

prediction error will increase with altitude.

For horizontal components:
a) For the same data, the error is more than twice as large than the error of

the radial component and decreases only slowly, if the number of 5' x 5'

anomalies increases;

b) The larger the data set, the smaller the representation error;

c) The influence of data errors decreases with increasing altitude;

d) The remote zone has a very significant effect on the results.

The results of the error estimates of gravity disturbance vector components at

the considered altitudes for the 18 cases are tabulated. The main numerical

results are: The radial component can be estimated with *1 mgal accuracy at
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50,000 ft altitude (on the basis of the stated data sets); to obtain the same

accuracy at 30,000 ft, the data accuracy (especially the 5' x 5' set) has to be

increased by 60%. Regarding the horizontal component, with the best data

distribution '2.3 mgal accuracy can be achieved at 30,000 ft altitude (0.5" in

the direction of the gravity vector). For the achievement of *1 mgal

accuracy, the block sizes must be reduced by a factor of 2 out to a spherical

distance of about 30, and the overall data errors must be reduced by 30%.

5.2.5.2. Upward Continuation of Gravity Anomalies. The upward continuation

of gravity anomalies was recently investigated by Cruz and Laskowsky (1984).

Three procedures were compared in a numerical study with real data. The

original gravity data consisted of about 18,386 free air anomaly values

irregularly distributed over a 7° x 9* area in New Mexico. The simple Bouger

anomaly and the terrain correction were also furnished. Elevation data in the

form of 30" x 30" grid point values were also available. 5' x 5' mean

anomalies were developed in the test area in steps including: data thinning,

terrain reduction, tailoring of covariance function, and usage of only ten of

the closest data points to the point of computation in the collocation

prediction. "Collocation from the ten closest points" was used to reduce the

size of the computation load. Mean elevations for 5' x 5' blocks were also

computed in the 7* x 9° test area from the 30" x 30" grid data.

The given mean anomalies are referred to the earth's surface, the upward

continuation of these anomalies without reductions would be possible by

collocation, or by a Bjerhammer-type solution; however, these were not feasible

due to large matrix inversion requirements. If the discrete estimation

procedures are ruled out, the use of upward continuation of continuous

anomaly functions require that the data be continued downward to the level

surface (sphere). To avoid the "major difficulties" associated with this

reduction, the investigators designed and tested a procedure named "the

indirect method". In this method the gravity anomaly field is separated into

three frequency ranges. The high frequency part, the effect of the shallow
topography, is modeled by directly integrating the gravitational effects

without any reduction to a level surface (by prism integration). From the

field left after the removal of the effect of the topography, the low frequency
component was also removed by using the Rapp 180 x 180 (1981) field. This

eliminated truncation errors due to the neglect of remote zone data. In the

removal process it was assumed that the data points are on a common level
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surface instead of their actual vertical position. The justification for this

assumption is that the vertical gradient of a 180-field is "expected to be

small" and that it was necessary to keep the computation time reasonable.

After the removal of the high and low frequency fields, the residual medium

field, much smoother than the original, however, it is still located on the

earth's surface. To improve the situation, an approximative "reduction" is

used. This is the terrain correction of an expansion of the topography to

degree 180, implicitly applied to the residual anomalies. Detailed discussion of

this procedure is in Moritz (1966). After all these operations, the final

position of the level surface, to which the data are "reduced", is unknown and

assumed to coincide with the mean elevation of the topography in the area of

upward continuation. This affects the upward continuation distance and the

results. The sensitivity of profile anomalies to 1.5 km. change in upward

continuation distance (Ho) for various heights are tabulated in the report.

The percentage ratios of rms change in profile anomalies, when Ho is reduced

by 1.5 km, to the rms values of profile anomalies at height Ho are: 3.8%, 6.8%,

and 9.1% at ho = 30km, 10km, and 5km, respectively.

The final value of the upward continued anomaly is the sum of the three

components discussed above. The results of the "indirect method" was

compared with the results obtained by the two other procedures. These were

the "direct Poisson" integration of the original uncorrected surface anomalies

assuming that they are on a level- surface; and the second-, the Poisson

integration of terrain corrected surface anomalies (Faye anomalies).

Test profiles were computed by the three procedures at 30, 10, and 5km

altitudes. The results show that the Poisson integration of terrain

uncorrected data are too low by 0.5, 0.6, and 0.7 mgal at 30, 10, and 5km,

respectively, compared with the results of the Poisson integration of terrain

corrected data (this bias is the upward continued terrain correction). No bias

was found between the two terrain corrected methods. Finally, the standard

deviation of the differences of all three methods are the order of (0.5, 0.6,

1.3) mgal at (30, 10, 5) km altitudes.

Test computations were made by the use of FFT technique and compared

to the Poisson integration results. At 30 and 10km altitudes, the agreement

between the two methods was 0.1 and 0.3 mgal respectively.
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5.2.6. Airborne Gradiometry Improvement of the Local and Regional Gravity

Field)

As it is shown in Table 2, section 5.1, the high and very high frequency

parts of the gravity field can be obtained today almost exclusively by point

gravity anomalies. 5' x 5' mean gravity anomalies and deflections of the

vertical contributed to the high frequency field; however, the distribution of

these data is mostly irregular. The coverage of the deflections is local and

the density of data in most cases is medium. Height data can furnish the

effect of the visible topography and can furnish high and very high spectral

resolution in combination with airborne gradiometer data. An economically

feasible and efficient technique for observation of the high frequency field

with high data density, regional coverage, regular data distribution and high

data accuracy will be the airborne gradiometry. The research and

development of a feasible moving base gradiometer system is continuing during

the past 15 - 20 years. The literature of these developments is quite

extensive, well-known, and therefore will not be discussed here. Nevertheless,

an operational system is expected to be completed soon and actual flight

testing can begin. Survey accuracy, simulation and geodetic application

studies have been made as early as 1975 and still continuing today. Some of

these studies are: Moritz (1975), Schwarz (1976, 1977), White (1980), Jekeli

(1983, 1984), TASC (1984).

A recent study on achievable accuracies for geodetic use by an airborne

gravity gradiometer system is by Jekeli (1983). The accuracy of the point

gravity vector on the earth's surface, estimated from the five independent

components of the second order gradient tensor, observed at altitude, was

evaluated by a numerical analysis. For the method of the analysis the

least-squares collocation was chosen as the ideally suited optimal process. In

addition to the advantages of the method, especially the immediate by-product,

the prediction error, and the disadvantages are also discussed. Among other

problem areas, Jekeli points out that the covariance model may not be

adequate because the gravity field is not known in sufficient detail for the

development of a model at very high frequency. It is stated, however, that

the error analysis based on least-square collocation, in spite of some negative

aspects, should provide "a fair indication" of the performance of the

gradiometer system. The analysis was formulated in both the space and

frequency domains with respect to either one or two horizontal dimensions.
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Approximations for a manageable analysis were: flat earth surface, infinitely

long tracks, continuous data, and infinitely many parallel tracks. The analysis

was carried out with a cutoff wavelength of 500km implying that the error

estimates refer to a high frequency reference field corresponding to degree

n > 80 in harmonic expansion. Other parametric values were: aircraft speed,

300 km/hr; altitude, 600 m; gradiometer white noise 35E 2 /H 2 , corresponding to

l.9E standard error for 10 seconds averaging time; and track spacing, 5km.

From the results of the analyses, it is concluded that the accuracy of

gravity estimated from airborne gradiometer data depends on the density and

coverage of the survey tracks. With track spacing of ) 5 km and

unidirectional-track survey, an accuracy of 1 mgal cannot be achieved. A

bidirectional-track survey substantially improves the accuracy of the estimated

gravity. Track spacing and survey altitude are significant contributors to

total error. A diagram depicts accuracies of the gravity disturbance (6g) and

components of the deflection of the vertical (,q), estimated from gradient

components observed at altitude along bidirectional tracks, in function of

track spacing. A second diagram shows the same in function of survey height

above the earth's surface. The accuracy of 6g at 5 km track spacing is about

0.4 mgal, at 10 km spacing it is about 0.7 mgal, and at 15 km track spacing it

is about 1 mgal. the deflection of the vertical components accuracies are 1:06,

0:1, and 0:22 (arc seconds) respectively.

From the survey height diagram, at 600 m the accuracies are as above.

At 2000 m, 6g has an error of 0.6 mgal, and at 4000 m 1 mgal. The deflection

'components at 2000 m have an error of 0:09 and at 4000 m 0:14 (arc

seconds).

It is noted that the above figures will be spoiled somewhat by the used

approximations, and they are relative to the reference field. If the reference

model would be error-free, the above accuracy figures would represent the

absolute accuracy. The current models have quite large errors, especially at
the shorter wavelengths; therefore, the attainment of the 1 mgal accuracy goal

cannot be firmly substantiated.

Another analysis by Jekeli (1984) concerns the techniques for processing

of gradiometry data. An airborne gravity gradiometer system will produce a

very large amount of data, especially if the I mgal accuracy for an area

survey is the desired goal and all the six gradients at each point are used.

In a grid of 300 km with 5 km point density, there will be 21600

74

....



observations.

If the optimal method, the least-squares collocation, is used, the inversion

of the autocovariance matrix (21600 x 21600) generally would require 0(1013)

operations. Therefore, an unmodified application of the least-squares

collocation is not feasible, under the present and foreseeable future computing

capabilities. As in many other applications of this technique, the

computational problem can be improved without hurting the optimality of the

solution. An example is applying certain restrictions to the pattern of the

observations.

If single observations are uniformly spaced on a straight line, the

auto-covariance matrix will have a Toeplitz structure. Such a simple Toeplitz

matrix can be inverted in O(n 2 ) operations, instead of 0(n 3 ) operations

required for the inversion of a general auto-covariance matrix (n = number of

observations). Using Fast Fourier Transform, this can be reduced to O[n(log

n)2 ] operations according to the claim of Bitmead and Anderson (1980).

If the measurement pattern is a grid of parallel tracks in both directions,

-. with uniform point spacing, and with one observation at each point, the

4auto-covariance matrix is a "Toeplitz - block Toeplitz matrix". If the number

of observations at each point is greater than one, we have a "blocked Toeplitz

- block Toeplitz matrix". An algorithm for the inversion of a block Toeplitz

. matrix in O(k 3 n 2 ) operations is given in Wiggins and Robinson (1965). The

* dimension of the block is k x k. This can be reduced to 0[k 2 n(log n) 2 ]

(Bitmead and Anderson 1980). An algorithm by Wax and Kailath (1983) requires

O(k 3 n 2 ) operations to invert a Toeplitz block Toeplitz matrix. This may be

transformed into one requiring O(n 3 k 2 ) operations, and it is beneficial if

n << k. Applying the Bitmead and Anderson (1980) algorithm to the example of

a 300 km grid with 5 km uniformly spaced points and six gradients at each

point, the inversion will require 0( 2 x 10") operations, which is feasible.

If rectangular coordinates are replaced by cylindrical polar coordinates,

then the covariance matrix for uniformly spaced single observations on a

j circular track, in addition to its Toeplitz structure, is also circulant. Its

Fourier transform is a diagonal matrix; its inversion requires O(n log n)

operations. If we have multiple uniformly spaced concentric tracks with

multiple observations at each point, then we have the case of blocked

circulant-block Toeplitz matrix. The transformation of rectangular pattern to

circular pattern is an additional processing of data.
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The second type of technique discussed by Jekeli (1984) under the title of

"Non-optimal Estimation" is reduction of the number of observations by

averaging. The Analytic Sciences Corporation (TASC) under contract to AFGL

is working on a method where the survey area around the computation point

is divided into zones. The size of the zones increases with the distance from

the point. On the basis of the average observations in each zone,

least-squares collocation is used for the estimation of the gravity vector. It

is expected that the differences between this and the optimal solution will be

small. Simulation tests and comparative analyses lie in the future.

Another approach in the "non-optimal" category is the use of integral

formulae derived from the second derivatives of the disturbing potential. The

formulae are given in Jekeli (1984). The formulae are exact except for the

planar approximation of the earth (this is usually negligible considering the

extent of the survey). The error sources are the discrete and noisy

observations and the finite extent of the data coverage. The effect of this

can be improved by the modification of integration kernel (Jekeli, 1982).

Using the integration formulae the disturbance vector would be at altitude,

and a simple least-squares collocation procedure would compute the

corresponding surface values.

In estimating anomalous gravity or gradients, two or three digit accuracy

in the final values are generally satisfactory. Therefore, under certain

circumstances, a large covariance matrix can be inverted by an approximate

method which is computationally feasible. The solution is non-optimal, but the

numerical results are indistinguishable from the results of the optimal solution.

Jekeli terms this type of estimation as "virtually optimal estimation". An

example is TASC's GEOFAST algorithm (Tait 1979). A class of methods for

approximation of the inverse of a large matrix is to improve sequentially on

initial estimates of the inverse by iteration. These techniques, called the class

of relaxation methods, converge satisfactorily; a good initial estimate will save

computer time. The techniques are described in Schwarz et. al (1973). Jekeli

investigated the conjugate gradient method for the inversion of the covariance

matrix. From the several options he chose a separable matrix approximation

suggested by Tait (1979) for the initial estimate.

A numerical analysis was performed for the purpose of comparison of

several data processing techniques. The assumed measurement grid was a

regular one with data points 5 km apart in each direction. The extent of the
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grid was variable from 50 km to 300 kin, and the altitude above the ground

was 600 m. The assumed accuracy of the gradient observation was 2E

(uncorrelated random error). The average accuracies of estimating the

residual gravity disturbances, using the (1) integral formulas, (2) integral

formulas with modified kernel, (3) conjugate gradient method with iterations,

and (4) the least squares collocation method, are compared in one tabulation

and five diagrams. The overall conclusions are that the least-squares

collocation is the optimal method in terms of accuracy, but requires

"inordinate" amount of computation "in the most general case". The integral

formulae may be sufficient in some applications, but not for the achievement of

I mgal accuracy.

The conjugate gradient technique for the inversion of the covariance

matrix of the least-squares collocation looks promising regarding reductions in

computations. It was experienced that convergence to 1 or 2 digits is

achieved in much fewer iterations than the theoretically required n iterations,

where n is the size of the matrix.

An earlier study regarding achievable accuracies from airborne

gradiometry was performed by Schwarz, K.P. (1976), and a simulation study

also by Schwarz (1977).

The accuracy study investigates the achievable accuracies of mean gravity

anomalies for various block sizes from 5' x 5' to 5' x 5" from observed first

and second order gradients at flying altitudes. Gravity anomalies are derived

by integrating the first order gradients observed by accelerometers

simultaneously with the gradiomiter system. In other words, this concept can

be interpreted as a combined set of measurements where the integrated first

order gradients provide the reference field (so to speak) for the fine

structure observed by the gradiometer system. The theoretical background of

separation of gravitation and inertia and the derivation of related mathematical

formulae are given in several publications of Moritz (1967, 1971, 1975). In

Moritz (1975) and Schwarz (1976), a system of linear second order differential

equations are given interrelating the gravity disturbance vector with the

observed second order gradients and accelerometer outputs (gravitational plus

inertial force combined). For the combination of the measured second order

gradients and integrated values, their downward continuation from the flight

altitude to the surface of the earth and for the computation of mean values,

the method of least squares collocation was used. All of the above steps were

77



performed by appropriate selection and changes of the covariance function.

In the particular case of Schwarz's study, the combination with satellite

altimeter data was also included in the algorithm.

Due to the decisive role of the covariance function in the collocation

method, after a careful study, two models: Hirvonen's (1962), derived from

local data; and Kaula's (1966), derived from local and regional data, were

selected. Using the characteristic parameters of both types of functions

(Hirvonen's called "local" and Kaula's called "regional"), the covariance

functions of the gravity anomalies, second order radial gradients, and geoid

undulations have been computed for 0 km (sea level) and 10 km (flight)

altitudes.

The measurements used are, as previously mentioned, gradiometer data in

a (#,X,r) - system and Ag values from integration along the profile. Mean

values at 10 second intervals were used as gradiometer measurements. For

the consideration of the measurement errors, the covariance matrix of the

measurements (C..) was augmented by the covariance matrix of the noise. To

obtain information on the sensitivity of the estimation to the errors of the

different measurements, the standard errors of each type of measurements

have been varied separately. The first values estimated were the Ag values in

any arbitrary position between two flight profiles. This can be done by

combination of various data of the respective flight profiles. The following

combinations were considered: (1) Ag values interpolated between the profiles,

(2) use of the three first order gradients condensed from the five gradiometer

measurements, (3) five second order gradients alone, and (4) a combination of

Ag and different second order gradients. The numerical problem is the

inversion of the covariance matrix of the measurements. After some test

computations it was found that an interpolation point between the flight
V.'." profiles can be satisfactorily determined by using a range of observation

points along the respective flight profiles. The length of the range is about

three times the distance from the estimated point to the profiles. It was

determined that the standard error decreases only slightly if more points are

used. The interpolated point should be an equal distance between the two

profiles. Computations were performed using both the "local" and "regional"

covariance functions. For the purpose of the accuracy study, oniy the error

covariance matrix was computed.

The downward continuation from flight altitude to zero level was
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performed by the selection of a covariance function that can be continued

analytically to the sea level, so that the downward continuation became a

problem of spatial interpolation. Like in the planar interpolation at the flight

altitude, the accuracy of the interpolated point depends on the distance to the

observation points. In both cases (planar and spacial interpolation) the best

data combination is Ag-values combined with gradiometer data. The optimal

solution is the combination of Ag and five independent gradients. For

east-west profiles, the combination of Ag, Tr#, and T## is very close to the

best combination.

To asses the influence of the measurement errors, two accuracy diagrams

are given in the report. One shows the standard error of the estimation in

the function of the standard error of the observed gravity anomalies and

errorless gradient measurements; the second diagram shows the estimation

error in the function of the standard error of the gradient measurements.

Both error diagrams give the estimation errors for profile spacings of 0.2',

0.5, 0.7, and 1.0. For the computation of mean gravity anomalies for

various block sizes, the basic least-squares collocation formula used for the

point anomalies was modified. For the derivation of the required

cross-covariance function between point and mean anomalies smoothing

operators were computed for blocks of different sizes according to Meissl

(1971). Using different assumptions for the measurement errors and various

profile spacings mean gravity anomaly accuracies were computed for several

block sizes.

The conclusions of Schwarz's accuracy study are summarized as follows:

1. The accuracy of an interpolated anomaly depends on its distance from the

nearest profile. Therefore, the dense spacing of the observation profiles

is more desirable than cross profiles. Cross profiles should be used for

updating only.

2. A high density of observed points along a profile is necessary only for

the integration of first order gradients. For interpolation of Ag values, a

density between 1/4 and 1/2 of the profile spacing is sufficient.

3. Optimal data combination for profile spacing larger than 0.3" should

include: Ag, Tr#, TrX, T##, T\\; for spacings smaller that 0.3", Ag, Tr4,

Tr, and Trr are sufficient.

4. The effect of measurement errors is larger for small profile spacing.

5. The combination with altimeter data is significant for large (5" x 5') mean
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values. The contribution to V u 1" blocks is marginal.

6. The attainable accuracies under the assumption made about the covariance

functions were:

a) with V profile spacing, an accuracy of *3 ngal standard error for

5" x 5" blocks and *5 regal for 1" 10 blocks can be achieved (for the

5" x 5" blocks, only with the combination of altimeter data).

b) with 0.3" profile spacing for 15' x 15' and 5' x 5' blocks, *3 regal can

be obtained.

In the "Simulation Study of Airborne Gradiometry" (Schwarz 1977)

simulated gravity anomalies and second order gradients are used for the

recovery of the anomalies at ground level from the simulated measurements at

flight level. The purpose of the study was to obtain an algorithm for

airborne gradiometry, and to design a method for efficient handling of very

large amounts of data expected from the measuring system. For covering an

area of 20" x 25' with profiles spaced at P and assuming 250 observations

per profile degree, there will be 130,000 measurements; if 20' profile spacing is

used, the number of observations will be 390,000.

The study consists of four distinct steps: (1) gravity and gradiometry

data are generated at ground and flight level, (2) the flight level data are

corrupted by an error model, (3) the ground level gravity anomalies are

estimated from the flight level data, and (4) estimated and generated ground

level data are compared.

The gravity field data was generated from a grid of mass points of 10'

spacing at 40 km depth for an area of 10" x 15". A positive or negative mass

of constant size, or a zero mass, was selected according to a normal

distribution (the data have been generated by DMAAC, St. Louis).

For the estimation of gravity anomalies at ground level from the simulated

observations at flight level (10 kin), the formula of least-squares collocation

was used. According to the spacing of the profiles and the size of the mean

anomalies to be estimated an optimal point configuration was chosen. It was

assumed that the observation profiles are parallel and the observation points

are at constant intervals (At 500 knots speed and 10 seconds integration time,

the observation rate was a uniform 2.6 kin). With the above conditions a
"moving operator" was computed (from the cross-covariances between signal

and observation and from the auto-covariance matrix of the observations).

This unchanged operator was moved along the flight profiles from one set of
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data points to the next, according to the pattern described previously in

Schwarz (1976), using all available observations.

The covariance function used in this study was that used in Schwarz

l1976). Its parameters are different somewhat from the covariance function

directly derived from the simulated data. This was also used for the

determination of the effects of assumption errors in the covariance on the

results of the estimation. For the statistical error models "normal models"

(numbers taken from a normal distribution), and Markov sequences of first

and second order were used. The difference between the normal and Markov

model is that normal deviates are uncorrelated, elements of Markov sequences

are not. To illustrate the accuracy of the estimated point anomaly, a 3" long

"interpolation profile" on the ground level obtained from "flight profiles"

spaced at 20' is compared to the exact profile of the simulated field. The

normal error model was used, and the standard errors of the observed gravity

anomalies and of the second order gradients were assumed as '1 mgal and 1lE

respectively (too optimistic assumptions). The agreement between the two

plotted profiles is very good. The standard error is 3.3 mgal for the point

estimation. If the interpolated profile is determined form the same data as

before, but is located directly below one of the flight profiles, the standard

error drops to 1.96 mgal. It is concluded that a measuring error of 21 mgal

at flight altitude (10 kin) is amplified to about *2 regal by downwa.A contin-

uation, and to about *3 regal when interpolated between two profiles 20' apart.

The results for the mean anomalies are tabulated and compared to the

accuracies obtained by the accuracy study (Schwarz 1976). With profile

spacing of 20', the accuracies of the 15' x 15', 30' x 30', and 1" x I' blocks

agree well with the values obtained by the accuracy study. The average of

the differences between the two sets of accuracy figures is about 0.4 mgal.

For the V x P blocks obtained from V profile spacing, the simulation study

gave '4.6 regal, versus the 25.6 regal obtained by the accuracy study. The

normal error model was used for the above computations.

In the conclusions it is pointed out that the two studies (accuracy and

simulation) agree well regarding the obtained accuracies, however, it is also

pointed out that correlated errors in the measurements will strongly effect the

accuracy of the results. Depending on the size of the correlations and on the

variances, the mean-square errors may double as compared to the uncorrelated

came.
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6. SUMMARY AND RECOMMENDATIONS

The principal requirement for the derivation of a model which

satisfactorily approximates the earth's gravity field is a uniform, dense, and

global coverage of several types of gravity data. The techniques to provide

the instrumentations necessary for such coverage already exist or are in their

final stages of development. The achievement of ambitious goals, like NASA's

Geopotential Research Mission (GRM), would require additional substantial

efforts in data collection programs and data processing techniques.

Current geopotential models are derived, generally, from the combination

of three types of information: perturbation of satellite orbits, satellite

altimeter data, and terrestrial mean anomalies.

Satellite orbital data represent the long wavelength part of the gravity

spectrum, the short wavelength parts are smoothed out by the attenuation of

the gravity field with the altitude. Models containing well distributed and

precise orbital perturbation data determine the low order coefficients very

well (i.e. degree and order 4) and they are very useful for satellite orbit

computations. Examples are GEM9, GEM-L2, GRIM-3B, and GRIM-MPI.

From satellite altimetry, the geoid over the oceans is obtained. These data

are regularly distributed and could yield about 50 km half wavelength

resolution. If so, this would give an expansion of 360 degree and order,

provided the coverage extends over the globe, currently, 1* x 1" mean

anomalies are developed from the altimeter data and merged with gravity

anomalies of 1" x 1* obtained over land. One of the two problems with this

type of data, the effect of averaging, can be reversed by the use of

"desmoothing" factors (Colombo 1981a). The other problem, that of aliasing,

remains after desmoothing or filtering. In the case of 1* x 1 * mean anomalies,

the aliasing errors are about 50% of the coefficient at the Nyquist frequency,

and larger above. Therefore, there is a need to replace the current mean

values with smoothed values free of aliasing. It is recommended to study this

problem and to test K.P. Schwarz's (1984) suggestion "to use a bandpass filter

on the power spectrum, obtain the auto-covariance function by Fourier

transforming the results to the space domain and estimate smoothed values in

the center of the block using this function".

In the combination of various data sets for global models, or using global

models as reference fields for regional or local gravity field approximations,
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the proper weighting of the various data sets, or models, would require their

actual accuracies. Wenzel (1982) proposed the use of the error covariance

functions of various data types for the derivation of spectral weighting

functions for use in data combinations. This approach can be used in

connection with any combination technique and it is "most promising" (Schwarz

1984). It is recommended to investigate the possibility of whether the spectral

weighting functions of a particular data set could establish a link between the

frequency range of the data sets and the accuracy of the combined product,

or harmonic coefficients of a certain degree and order derived from the data.

From the inspection of the percentage errors of the coefficients of various

solutions (e.g. Rapp 1981), it can be seen that the coefficients above degree 12

have larger errors. It is also apparent that up to degree 15, the coefficients

are influenced mainly by satellite perturbation data, and above degree 15 the

mean anomalies, including altimeter data, dominate the accuracy of the

combination.

The accuracy of current models are illustrated by the intercomparison of

the result obtained by various groups. It is true that the various groups

frequently used the same observed material, but their combination and

adjustment methods are different. The comparisons indicate only the order of

magnitude of the errors in the various solutions. Generally the data errors,

lack of data continuity and aliasing are the principal sources of error. For

details see section 2.

6.1. Satellite Programs for the Improvement of the Gravity Field

6.1.1. Satellite Altimetry

The most productive program contributing to the improvement of global

gravity coverage was satellite altimetry. GEOS-3 and SEASAT results, their

contributions to the geodetic aspects of the program, and future plans for

satellite altimetry are discussed in detail in Section 3.1 of this report.

As it was mentioned earlier, the disadvantage of satellite altimetry from

the point of view of geopotential modeling, is that the data coverage, due to

its very nature, is restricted only to the ocean areas. This requires the

combination with another type of data (terrestrial mean anomalies). Therefore,

the global data homogeneity is lost. Nevertheless, a homogeneous, regular,
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and fairly accurate coverage was possible over the areas by this technique.

The results of satellite altimetry can be improved upon by improving three

related factors: a) sea topography and tidal corrections, b) accuracy of the

radial component of the satellite orbit, and c) precision of the altimeter

measurements.

Currently, two new altimeter missions are in some stages of their

development: The GEOSAT and the TOPEX. The GEOSAT of the Navy was

scheduled for the mid 1980's and the TOPEX of NASA is contemplated for the

1990's. GEOSAT will have a SEASAT type of sensor and about 18 months

nominal mission time. The plans for TOPEX call for an altimeter accuracy of *2

cm and for a sea surface height accuracy along a grid of '14 cm.

For the improvement of the radial component of the orbit, an improved

TRANET Doppler network is planned, and the Jet Propulsion Laboratory (JPL)

intends to develop a new tracking system (Series X) using the GPS system for

the determination of the tracking sites' coordinates.

6.1.2. Satellite to Satellite Tracking and Satellite Gradiometry.

These techniques, discussed in detail in sections 3.2 and 3.3, are similar in

the respect that both have a capability to provide a high density, regular and

global coverage of gravity data. The "global coverage" in both cases are

real, i.e. covering land and sea, pole to pole, without any gaps. The

frequency range for both will be in the medium field, corresponding to the

frequencies of 1" x 1* mean anomalies, provided by satellite altimetry, and by

1' x V land values. The possibility, depending on the survey configurations,

exists for extension into higher frequency ranges, particularly for the

gradiometer survey. The data accuracies will be superior to the accuracy of

the current altimeter derived data.

The results of several accuracy and simulation studies are summarized in

section 3.2 and 3.3. The results of some of these are given as follows:

For a low-low satellite to satellite tracking mission of six months, at an

altitude of 160 km and a range-rate noise of '1 micrometer/sec with 4 sec

integration time, the accuracy of the derived mean anomalies of V X 1* is

estimated as 12.3 mgal, and of the 1" x 1" geoid undulations as 4.3 cm (Jekeli

and Rapp 1980)

Colombo (1981b) from the error analysis of the global geopotential,

obtained from a low-low SST mission, under certain conditions, the following
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accuracies:

(1) The relative error in the potential coefficients could be better than: 1%

up to degree n 130; better than 10% up to n = 210; and better than 50%

up to degree n - 270.

(2) The geoid point value accuracy could be better than 5 cm rms in the band

from 3000 km to 40,000 km and better than 10 cm in the band from 140 km

to 3000 km (both total errors).

For satellite gradiometry two instruments are under development: the

cryogenic gravity gradiometer by Paik (1981) and "Project Gradio" by Balmino

et al (1984). The instrument precision goals are 10-'E (lE = 10-9s-2). An

operational system is expected for the 1990's.

Simulation studies for five or one (radial) component systems are available.

Some are summarized in section 3.3. The most recent is by Rapp (1985). The

SST and satellite gradiometry is intercompared with two recent geopotential

models. (Rapp 81 and GEM-L2). The SST mission improves current models by

a factor of 10. The gradiometer mission improves the SST results by about

60% with the exception of wavelengths shorter than 20 km.

6.2. Data Processing and Adjustment Techniques

The processing of a large amount of observations and the combination of

several types of gravity data for estimation of gravity field models is today

not on the optimal level. It is widely recognized that the least squares

collocation is the optimal method for the solutions of many problems involving

functionals of the gravity potential. It is also widely known that in many

cases the advantages of this method is balanced out by the problem of

inverting large matrices, the sizes of which, normally, equals the number of

observations.. The problem of the number of observations will be more

difficult if the data from satellite to satellite tracking and satellite gradiometry

will be available.

The problem can be improved with utilization of the symmetries of data

and with some restrictions to the pattern of the observations. Colombo's

(1981) algorithms for harmonic analysis is an example where the symmetries of

data and relations between spherical harmonics and Fourier series was used

for the evaluation of harmonic coefficients (Section 3.5).
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Hajela (1984) implemented Colombo's (1981) algorithms, originally designed

for 5" x 5" anomalies, for global 1" x 1 anomalies with some necessary

modifications. The optimal estimation of the coefficients was carried to degree

and order 250. The use of optimal estimation resulted in improvement versus

Rapp's coefficients obtained by a good approximative process (Section 3.5).

Jekeli (1984) discussed how the computational load can be reduced without

hurting the optimal solution of the least squares collocation. According to the

various patterns of observations, the auto-covariance function will have

different Toeplitz structures. The number of the required operations for the

different Toeplitz matrices are given in the paper (see Section 5.2.6.).

S.C. Bose et al. (1983), like Colombo's approach, recommend the more

extensive exploitation of the grid structure of the data and of the structure

of the covariance matrix for the reduction of the computations. They explore

the equatoi al and rotational symmetries to avoid the ill-conditioning by

crowded data in polar regions. It is shown that at high latitudes thinned-out

data samples can be used (Section 3.5)

Rapp (1984) reviewed some of the adjustment techniques for the

combination of satellite and terrestrial data for the development of harmonic

coefficients. For the method based on orthogonality relation between anomalies

and harmonic coefficients, correction terms were derived for the effects of the

assumptions of spherical approximation and of the zero elevation of the

anomalies. The effects of the elevation is small (1% - 3%); the spherical

approximation error is large, 10% at degree 75 and 31% at degree 180. Some

alternate adjustment techniques are discussed using the orthogonality, with

anomalies on a bounding sphere enclosing all the topography. It is

recommended to use 0.5" x 0.5" mean anomalies globally when this data

becomes available over significantly large areas (Section 3.5).

6.3. Estimation of Gravimetric Quantities in Local and Regional Areas.

The estimation of the local or regional gravity field usually consist of the

determination of some functionals of the anomalous gravity potential in a

particular area or at selected points.

*The quality of the estimated gravimetric quantities will be determined by:

(1) the density of the available data
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(2) the extent of the data coverage

(3) the sensitivity of the function to be estimated to the frequency of

the given data set

(4) measurement accuracy.

The spectral sensitivities of geoid height (N), gravity anomaly (Ag) and of

the second order radial gradient (Trr), as computed by Schwarz (1984) are

listed in Table 5.1. The current and future data types are characterized

according to spectral resolution, density, coverage, distribution, and accuracy

in Table 5.2 (after Schwarz 1984).

If a truncated series of harmonic coefficients is used as a reference field

for some local estimation, for the proper weighting of the two data sets, it is

desirable to know: a) the part of the total spectral power contained in a

*solution of degree and order N, b) which error spectrum is associated with

the global solution? This subject area should be investigated in detail

(Section 5.1).

The local or regional gravimetric quantities can be computed by integral

formulae or by spherical harmonic series. The two are equivalent

theoretically. Practically, however, they are different due to the differences

in input data characteristics. Since the theoretical data requirements for the

integration formulae cannot be fluily satisfied, these formulae have been

modified and used in combination with other data contributing the information

outside of the zone of integration. Spherical harmonic expansions of the

potential to degree and order 180 (Rapp 1978, 1981; Lerch et al 1981),

expansions of the topography, of the rock equivalent topography and of the

isostatically compensated topography (Rapp 1982) are available. Gridded

digital terrain models, (DTMs) are also available for many areas for smoothing

the local gravity field, necessary especially in topographically rough areas.

A number of studies for the estimation of local and regional gravity fields

are listed and some are reviewed in detail in Section 5.2.1. The modifications

of the Stokes and Vening-Meinesz formulae, their combination with harmonic

coefficients and topographic data are discussed in Lachapelle (1984),

Lachapelle (1978), and Jekeli (1981).

Gravimetric and satellite derived undulations are compared by Rapp and

Wichiencharoen (1984) using 20 Doppler sites in the U.S., ten in the mountains

and ten in flat areas. The results of the study are given in Section 5.2.2.

The accuracies of height anomalies and deflections of the vertical obtained
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from the combination of harmonic coefficients and mean gravity anomalies was

studied by Heck (1983). The integration, replaced by summation, is limited to

a cap around the computation point, the outer zones are replaced, or

represented, by a geopotential model. The errors of various sources are

analyzed and it is revealed that at the zeros of the kernel functions within

the spherical integrals, the error functions show local minima. Therefore, the

integration radius should be extended exactly to the first zero of the modified

Stokes and Vening Meinesz kernel functions (Section 5.2.3).

Various methods of the consideration of terrain effects in the estimation of

local gravity field quantities and the use of the stepwise collocation for the

estimation are discussed in two studies. The first, by Forsberg and

Tscherning (1981), is summarized in Section 5.2.4. A number of observed

gravity anomalies and deflections of the vertical were predicted in the

mountainous area of New Mexico. The original unchanged gravity data and

their corrected versions by several reduction methods were used to illustrate
the effect of the reductions. The conclusion of the study is that it is

possible to predict deflections of the vertical and gravity anomalies in areas

of rugged topography with accuracies of 1" and 3-4 mgal respectively from

anomaly data spaced at 6' apart, if terrain corrections are computed from

0.5 x 0.5 minutes point elevation data. The other study, "The geoid of

Austria" by Sunkel (1983), determined the geoid from 521 observed deflections

of the vertical and a 20" x 20" digital terrain model as local data. In

addition, the Rapp 1981 geopotential model and a 1" x 1' mean digital terrain

model (DTM) were used as global information. The results from a stepwise

collocation, topographic-isostatic reduction, and of the geopotential model were

combined to obtain the final values. The differences between height anomalies

and geoid heights are in very good agreement with the results obtained from

Bouger anomalies and topographical elevation data (Section 5.2.4.2).

Some other collocation studies for prediction of free-air anomalies (Sunkel

and Kraiger 1983), combination of collocation and geophysical inversion, and

studies of terrain reduction accuracies in the report of Forsberg (1984) are

reviewed in Section 5.2.4.3.
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6.4. Gravity at Altitudes

Several of the more recent studies on this subject are described in

sections 5.2.5.1 and 5.2.5.2.

In Sunkel (1984a), four different approaches are discussed for the

prediction of gravity disturbance at altitudes, with the advantages and

disadvantages of each. The recommended most feasible method is a

combination of least squares collocation, integral formulae, high degree earth

model, and the best topographic information (the last item is crucial in areas

of rugged topography). A detailed error analysis is given for each step of

the process, with the following groups: (1) data reduction errors, (2) mean

anomaly errors, (3) representation errors, and (4) errors of data reduction

effects on the estimated quantities.

In Sunkel (1981), the accuracies of the disturbance vector components at

high altitude are estimated from a given set of free-air mean anomalies and

their accuracies at sea level. The general conclusion from the study is that

the radial component can be estimated with *1 mgal accuracy at 50,000 ft

altitude from the given, reasonable, data set. To obtain the same accuracy at

30,000 ft, the accuracy of the data (especially the 5' x 5' mean anomaly field)

has to be increased by 60%. For the horizontal components, the best given

data distribution yields only *2.3 regal accuracy at 30,000 ft (M5 in the

direction of the gravity vector), for the achievement of *1 mgal, the given

block sizes must be reduced by a factor of 2 out to a spherical distance of

30', and the overall data errors reduced by 30%. Two methods, the Poisson.

upward continuation integral and least squares collocation, were used. The

results agree within 10%.

The upward continuation of gravity anomalies was recently investigated by

Cruz and Laskowski (1984). Three procedures were used and the results

intercompared: (1) the Poisson integral using uncorrected anomalies, (2) the

Poisson integration using terrain corrected surface anomalies, and (3) a

procedure called "indirect method" where the given anomaly field is divided

into three frequency ranges. The three ranges (low, medium, and high) are

treated separately. Values at altitudes of 30, 10, and 5 km were computed

along test profiles. The profiles obtained from terrain-uncorrected anomalies

have a negative bias of 0.6, 0.5, and 0.7 mgal, respective to the above

altitudes, versus the results from terrain corrected data. The st-ndard
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deviation of the differences among the three methods are on the order of 0.5,

0.6, and 1.3 mgal at 30, 10, and 5 km elevations. A FFT was also tested and

the results agree with Poisson integration on the level of 0.1 and 0.3 mgal at

30 and 10 km elevations.

With reference to the various reductions of gravity data and to the

studies regarding the gravity disturbance vector at high altitudes, it is

recommended to perform the following study:

(1) Considering that digital terrain models (DTMs) are already available in a
gridded form for many regional and local areas, and harmonic coefficients

of the potential up to order and degree 180, and 250 are also available,

the feasibility of obtaining free-air mean anomalies for small blocks (5' x

5', 15' x 15', 30' x 30') from the above information should be investigated.

(2) The various steps of data reductions and the feasible methods for

prediction of the gravity disturbance vector at high altitudes 30,000 to

200,000 ft) should be evaluated by numerical analyses. For the optimal

and feasible procedure, an algorithm should be prepared consisting of a

series of existing or new subroutines for the various steps of the

procedures. The computations should provide the accuracies of each step
involved and the errors of the final values, i.e. of the vector components

of the gravity disturbance at the altitude.

6.5. Airborne Gradiometry.

In section 5.2.6., two recent studies by Jekeli (1983, 1984) and two earlier

reports by K.P. Schwarz (1976,1977) on this subject are described. Each

author prepared a study on the accuracies achievable with an assumed

instrumentation, measuring accuracies, and observation pattern. The second

analyses by the authors are concerned with techniques for processing of the

large number of measurements.

Jekeli (1983) evaluates the accuracy of the point gravity vector from the

4five independent components of the gradient tenser observed at altitude. A

uniform bidirectional track spacing at 600 m altitude was used. The

gradiometer accuracy was assumed to be 1.9E standard error. The accuracy

of the obtained gravity disturbance at 5 km track spacing was about 0.4 mgal,

at 10 km spacing about 0.7 mgal, and at 15 km spacing about 1 mgal. The
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deflection components were accurate to (7:6, (71, and 0:22 respectively. The

change of the accuracies in the function of altitude is also give in section

5.2.6. The accuracies refer to a reference field corresponding to a harmonic

expansion of about degree 80; therefore, the figures in an absolute sense, will

be downgraded by the errors of such field. The method of analysis was the

least squares collocation.

In Jekeli (1984) the possible arrangements for the auto-covariance

functions (Toeplitz structures) to reduce the required operations for the

inversion are discussed. These arrangements (possible under certain

restrictions for the pattern of the observations), will not affect the optimal

solution. Several "non-optimal" and "virtually optimal solutions" are also

discussed. The various processing techniques are intercompared in a

numerical analysis.

The accuracy study by Schwarz (1976) investigates the achievable

accuracies of mean anomalies for various block sizes. The observed quantities

are the first and second order gradients of the potential, measured by a

combined accelerometer-gradiometer system (six measurements at each point).

The inertial and gravitational forces can be separated from the output of the

accelerometers by a system of linear second-order differential equations

interrelating the gravity disturbance vector with the observed second order

gradients and the accelerometer's output. By the integration of the first

order gradients along the flight profile gravity anomalies (Ag) were obtained.

The measurements used were Ag and the five components of the second order

gradients in a *,X,r system. The least squares collocation technique was used

for the analysis. At equal distance between two flight profiles, interpolation

points were computed using a range of observations along both flight profiles.

From the interpolated profiles, the mean anomalies were computed. With O.3

spacing of east-west profiles, *3 mgal accuracy was obtained for 5' x 5' and

15' x 15' blocks. With 1' spacing, *5 mgal was the accuracy of the 1' X V

blocks. The flight altitude was 10 km.

The simulation study of Schwarz (1977) consisted of four steps: (1)

gravity and gradiometry data were generated at ground and flight level, (2)

the flight level data were corrupted by an error model, (3) the ground level

anomalies are estimated form the flight level data, and (4) estimated and

generated ground level data were compared. Again the least squares

collocation was used for the analysis. Parallel observation profiles with a
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constant intervals for the observations points (2.6 km) was the pattern of the

measurements. This permitted computation of a "moving operator" (from the

cross-covariance between signal and observation and from the auto-covariance

matrix of the observations). This unchanged operator was moved along the

flight profiles from one set of data points to the next. This arrangement

allowed an efficient processing. The standard errors of the observed

anomalies and gradients were assumed to be *1 mgal and tIE respectively.

The standard error of a point along the interpolated profile on the ground

was 3.3 regal. Comparing the mean anomaly accuracies obtained from the

accuracy study and simulation, the average of the differences is 0.4 mgal.

Recommendation: The conclusions of the experimental work and theoretical

studies in the area of airborne gravimetry conducted by AFGL and OSU in the

late 1960's and early 1970's was that the desired resolution and accuracy

cannot be attained using accelerometer-type sensors on a moving platform.

The reason for this was that the gravimeters or accelerometers measured not

only gravity but also inertial disturbances, due to the various aircraft

motions. According to the principle of equivalence, the two forces cannot be

rigorously separated. Attempts to separate by the use of the frequency

differences between gravitation and inertia was only partially successful. A

rigorous separation is possible in case of second order gradients and linear

inertial accelerations. This experience initiated the research to produce a

moving base gravity gradiometer. The Global Positioning System (GPS)

currently under full development changes the above situation. The GPS can

provide instantaneously the position and velocity of a moving object with high

accuracy. If an aircraft equipped with accelercmeters measuring the combined

gravitational and inertial forces, the GPS system can furnish independently

the inertial part, i.e. no second order gradient sensors are required. This

would greatly simplify the process of airborne gravimetry. It is recommended

that a study be performed for the determination of the feasibility, system

parameters, and expected accuracies of this approach.
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